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Richard M. Murray
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17 March 2009

Goals:

• Definition and examples of cooperative control systems

• Distributed receding horizon control

• Survey of other results in cooperative control: formations, coverage, ...

Reading:

• R. M. Murray, “Recent Research in Cooperative Control of Multi-Vehicle 
Systems”, Journal of Dynamic Systems, Measurement and Control, 
129(5):571-583, 2007
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Adaptive Ocean Sampling Network

Goal: track the important events and dynamics in the Monterey Bay (Ca)

• Motion of vehicles is based on the observations taken by the vehicles

• Allows sensors to be positioned in the areas in which they can do the most good, as a 
function of the data already collected

• Cooperative control strategy is used to control the motion of the vehicles

• Summer, 2006: 10 gliders were controlled over 4 weeks to collect data

• More info: http://www.mbari.org/aosn + Leonard et al (TAC, 2007)
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Distributed Aperature Observing Systems

TechSat 21 (AFRL)

• Collection of ``microsatellites'' that would be used to form a ``virtual'' satellite with a 
single, large aperture antenna

• Project cancelled in 2003 due to funding limits (12 satelites -> 3 sats -> 1 sat)

Terrestrial Planet Finder (NASA)

• Use optical interferometry to image distance stars and to detect slight shifts in the 
stars positions that indicate presence of planets orbiting the stars
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Transportation Systems

California Partners for Advanced Transit and Highways (PATH)

• System for allowing cars to be driven automatically down a freeway at close spacing

• Idea: reduce speed of collision via close spacing; need to worry about string stability

Next generation air traffic control

• Move from a human-controlled, centralized structure to a more distributed system

• Enable ``free flight'' technologies allowing aircraft to travel in direct paths rather than 
staying in pre-defined air traffic control corridors.  

• Improve the current system by developing cockpit ``sensors'' such as augmented 
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Other Cooperative Control Systems

Power grid 

Communication networks

• Networking/congestion control

• Routing/queue management

• Servers/resource allocation

Supply chain mgmt
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Cooperative Control Systems Framework

Agent dynamics

Vehicle “role”

•             encodes internal state + 

relationship to current task

• Transition 

Communications graph

• Encodes the system information flow

• Neighbor set 

Communications channel

• Communicated information can be lost, 

delayed, reordered; rate constraints

• ! = binary random process (packet loss)

Task

• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update
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ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ Rq

yi
j [k] = γyi(tk − τj) tk+1 − tk > Tr

J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T ),α(T )),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)
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Information Flow in Vehicle Formations

Example: satellite formation

• Blue links represent 
sensed information

• Green links represent 
communicated information

Sensed information

! Local sensors can see some subset of nearby 
vehicles

! Assume small time delays, pos’n/vel info only

Communicated information

! Point to point communications (routing OK)

! Assume limited bandwidth, some time delay

! Advantage: can send more complex 
information

Topological features

! Information flow (sensed or communicated) 
represents a directed graph

! Cycles in graph ⇒ information feedback loops

Question: How does topological structure of information flow affect
stability of the overall formation? 
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Sample Problem: Formation Stabilization

Goal: maintain position relative to neighbors

• “Neighbors” defined by graph

• Assume only sensed data for now

• Assume identical vehicle dynamics, identical 
controllers?

Example: hexagon formation

• Maintain fixed relative spacing between left and 
right neighbors

Can extend to more sophisticated “formations”

• Include more complex spatio-temporal constraints

relative
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Stability Condition

Theorem  The closed loop system is (neutrally) stable iff the Nyquist plot of the open loop 
system does not encircle -1/!i(L), where !i(L) are the nonzero eigenvalues of L.

Example

Fax and M
IEEE TAC 2004
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Example Revisited

Example

• Adding link increases the number of three cycles (leads to “resonances”)

• Change in control law required to avoid instability

• Q: Increasing amount of information available decreases stability (??)

• A: Control law cannot ignore the information " add’l feedback inserted
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Improving Performance through Communication
Baseline: stability only

• Poor performance due to interconnection

Method #1: tune information flow filter

• Low pass filter to damp response

• Improves performance somewhat

Method #2: consensus + feedforward

• Agree on center of formation, then move

• Compensate for motion of vehicles by 

adjusting information flow

Fax and M
IEEE TAC 2004

Richard M. Murray, Caltech CDSEECI, Mar 09 12

Special Case: (Asymptotic) Consensus

Consensus: agreement between agents using information flow graph

• Can prove asymptotic convergence to single value if graph is connected

• If wij = 1/(in-degree) + graph is balanced (same in-degree for all nodes) " all agents 

converge to average of initial condition

Extensions (Jadbabaie/Morse, Moreau, Olfati-Saber, Xiao, Chandy/Charpentier, ...)

• Switching (packet loss, dropped links, etc),time delays, plant uncertainty

• Nearest neighbor graphs, small world networks, optimal weights

• Nonlinear: potential fields, passive systems, gradient systems

• Distributed Kalman filtering, distributed optimization

• Self-similar algorithms for operation with varying connectedness

• See also: gossip algorithms, load balancing, distributed computing (Tsitsiklis)
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Open Problems: Design of Information Flow (graph)

How does graph topology affect location of eigenvalues of L?

• Would like to separate effects of topology from agent dynamics

• Possible approach: exploit form of characteristic polynomial

• Exploit structure of quadratic invariance (Rotkowitz and Lall)
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Performance

Look at motion between selected vehicles

Jin and M

CDC 04

G1 - Control G2 - Performance
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String Stability

Goal: string of vehicles following 
each other

• Transients can grow as you pass 
down the line

• System is string stable if for 
every ! there exist a " such that

(! norm with respect to time)

• Problem can get worse when 
there are cycles of information 
(due to performance specs)

One solution: mix in global 
information

• Allow some centralized 
information to be used to provide 
stability and robustness
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sup
i
‖xi(0)‖ < δ

⇐⇒ sup
i
‖xi(·)‖∞ < ε
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Robustness

What happens if a single node “locks up”

Different types of robustness (Gupta, Langbort & M)

• Type I - node stops communicating (stopping failure)

• Type II - node communicates constant value

• Type III - node computes incorrect function (Byzantine failure)

Related ideas: delay margin for multi-hop models (Jin and M)

• Improve consensus rate through multi-hop, but create sensitivity to communications 
delay

• Single node can change entire
value of the consenus

• Desired effect for “robust”
behavior: "xI = #/N

x1(0) = 4

x2(0) = 9

x3(0) = 6 x4(t) = 0

X5(t) = 6

x6(t) = 5

Gupta, Langbort and M

CDC 06
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Stability of (Heterogeneous) Nonlinear Systems

Model as affine nonlinear system

• allow agents to have different 
dynamics

Stability conditions

! Asy stable if

! Fairly weak set of conditions: tells us 
when interconnection doesn’t 
destabilize system

Cremean and M
CDC 2003
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Formation Operations: Graph Switching

Control questions

• How do we split and rejoin teams of vehicles?

• How do we specify vehicle formations and control them?

• How do we reconfigure formations (shape and topology)

Consensus-based approach using balanced graphs

• If each subgraph is balanced, disagreement vector provides common Lyapunov fcn

• By separately keeping track of the flow in and out of nodes, can preserve center of 
mass of of subgraphs after a split manuever
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Extensions to Flocking (Olfati-Saber)

Swarm behavior using nearest 
neighbor rules

• Implement a control law of the 
form

•                             is a gradient-
based term where V is a 
potential function

•                              is a damping 
term based on the relative 
velocities of neighboring vehicles

•      is a navigational feedback 
term that takes into account a 
group objective, such as moving 
to a given rendezvous point

• Use potential function to keep 
vehicles away from obstacles but 
near each other

19

ui = f i
g + f i

d + f i
γ .

f i
d = α(q)(vi − vj)

f i
γ

f i
g = −V (yi, y−i)
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Optimization-Based Control

Task:

• Maintain equal 

spacing of 

vehicles around 

circle

• Follow desired 

trajectory for 

center of mass

Parameters:

• Horizon: 2 sec

• Update: 0.5 sec

Local MPC + CLF
• Assume neighbors follow 

straight lines

Global MPC + CLF

Dunbar and M
Automatica, 2006
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Individual optimization:

Theorem.  Under suitable 
assumptions, vehicles 
are stable and converge 
to globally optimal solution.

Pf  Detailed Lyapunov 
calculation (Dunbar thesis)

Main Idea: Assume Plan for Neighbors

s
ta

te

timet0 t0+d

z3(t0)

z3
*(t;t0) z3

k(t)

What 2 assumes

What 3 does

Compatibility constraint:

• each vehicle transmits plan 

to neighbors

• stay w/in bounded path of 

what was transmitted 

Richard M. Murray, Caltech CDSEECI, Mar 09 22

Example: Multi-Vehicle Fingertip Formation
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Simulation Results

Richard M. Murray, Caltech CDSEECI, Mar 09

Cooperative Tasking (Richards et al)

Formulate UAV tasking problem
as cooperative control problem

•    is the time at which the pth 
vehicle completes its task

•   is the time at which the last 
vehicle completes its task

• Cost function trades off input 
forces on vehicles with time that 
the overall task is completed +  
tasks of the individual vehicles

Solution approach: mixed integer 
linear programming (MILP)

•        is the suitability of vehicle p to 
visit waypoint i

•        is 1 if vehicle p visits waypoint 
i and time t zero otherwise
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Rendezvous (Tiwari et al)

Goal: collection of vehicle arrive in a given 
region at the same time

•     = rendezvous point region, radio delta

•    = max and min distances of vehicles at the 
time ta that first of them enters rendezvous
point:

• Find a control law a such that from all initial 
conditions, 

• Perfect rendezevous:    = 1

Approach: create invariant regions (cones) 
outside of forbidden regions

• Solution is centralized: each vehicle needs to 
know where the others are at

• Can also formulate as optimization-based 
problem; possibly decentralize?
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ρ ≤ ρdes ≤ 1.

!

ρ

ρ =
max(‖xi(ta)‖)

δ

ρ
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Coverage (Cortes, Martinez, Bullo)

Place N vehicles over a region to maximize sensor coverage

• Partition region Q into set of polytopes                                 that cover Q

• Let                        represent sensing performance (small is good);         = distribution 
density function

• Represent coverage problem as minimizing the cost function

• Can show that if environment is fixed, optimal sol’n is a (weighted) Voronoi partition

• Can implement coverage using a control law of the form

• Can achieve solution using nearest neighbor communications 
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W = {W 1, . . . ,W ! }

L =
n∑

i=1

∫

W i

f(‖q − yi‖)φ(q)dq,

f i : R+ → R+

W i = {q ∈ Q|‖q − yi‖ ≤ ‖q − yj‖,∀j &= i}.

ui = −k(yi − CV i)

φ(q)
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Summary
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Information flow and stability

• Stability conditions for interconnected 
dynamical systems

• Extensions: centralized information, 
consensus, ...

Distributed optimization

• Conditions on amount of information 
required to solve optimization problem

• Distributed receding horizon control

Asynchronous protocols

• Decentralized strategies for control, 
decision making and estimation

Verification and Validation
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NCS Lecture Schedule

28

Mon Tue Wed Thu Fri

9:00
L1: Intro to 

Networked 

Control Systems

L5: Distributed 

Control Systems

L7: Distributed 

Estimation and 

Sensor Fusion

L11: 

Quantization and 

Bandwidth Limits

L13: Distributed 

Protocols and 

CCL

11:00
L2: Optimization-

Based Control

L6: Cooperative 

Control

L8: Information 

Theory and 

Communications 

L12: Estimation 

over Networks

L14: Open 

Problems and 

Future Research

12:00 Lunch Lunch Lunch Lunch Lunch

14:00
L3: Information 

Patterns

L9: Jump Linear 

Markov 

Processes

16:00
L4: Graph 

Theory

L10: Packet 

Loss, Delays 

and Shock 

Absorbers


