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Figure 3.7: Attenuation of perturbations in a genetic circuit with linearization given by
equation (3.8). The parameters of the closed loop system are given by a = 800 uM/s,
ap = 5x 107 uMys, y = 0.001 s~!, 6o = 0.005 s, k =0.02 s}, n =2, and K = 0.025
uM. For the open loop system, we have set @ = P,d¢/(«/y) to make the steady state values
of open loop and closed loop systems the same.

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

d
7); = f(x.6,u),  y=h(x0)

to various perturbations in the parameters 6 and disturbance inputs u. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters 6 are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little change as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters 6. Let y.(6p, ug) represent the output correspond-
ing to an equilibrium point x, with fixed parameters 6y and external input ug, so
that f(x.,6p,up) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point,
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and the dynamics near the equilibrium point vary as a function of changes in the
parameters 6 and external inputs u.

We start by assuming that # = 0 and investigate how x, and y, depend on 8; we
will write f(x,6) instead of f(x,0,0) to simplify notation. The simplest approach
is to analytically solve the equation f(x,,8y) = O for x, and then set y, = h(x.,6p).
However, this is often difficult to do in closed form and so as an alternative we
instead look at the linearized response given by

dx, . dye

S o= , Svo:= —
040 g, Y0 g

b
which are the (infinitesimal) changes in the equilibrium state and the output due

to a change in the parameter. To determine S,y we begin by differentiating the
relationship f(x.(0),0) = 0 with respect to 6:

(3.9)

Ox 00

df ofdx, Of Cdv.
a0 " oxdo Tae 0 = S”‘d@‘(

af)“ of
(xe,bp)
Similarly, we can compute the output sensitivity as

_dye _dhdx, Oh (ah(a_f)—l of ah]

YOT00 T oxdo 96 | ox\ox

00 00

(xe,0p)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters 6 on the equilibrium state x, and
corresponding output value y,.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that x, depends on both 6 and u,
with f(x.,6p,u0) = 0 and 6y and ug representing the nominal values. Then

_ (a_f) of _ (a_f) of
(Go.ut0) dx) 06 (Goutto) dx) du

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

dx,
do

dx,

(xe,00,u0) du

(xe,00,t0)

D* =diag{x,}, D’ =diag{y.}, D= diag(6},
then the scaled sensitivity matrices can be written as
Svo=(D*)"'S, oD §,5=(D")"'S, 4D’ (3.10)

The entries in these matrices describe how a fractional change in a parameter gives
a fractional change in the state or output, relative to the nominal values of the
parameters and state or output.
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Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of the
protein concentration to fluctuations in its parameters in two cases: a constitutive
promoter (open loop) and self-repression (closed loop).

For the case of open loop we have F(P) = a, and the system has the equilibrium
point at m, = /9, P, = ka/(yd). The parameter vector can be taken as 6 = («, d, «,y)
and the state as x = (m, P). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:
ox. [ ;- 0 0 ]

— |k _kax a _ka|>
¥6  ys?  y6 6y’
where the parameters are evaluated at their nominal values, but we leave off the
subscript O on the individual parameters for simplicity. If we choose the parame-
ters as 6y = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

S"Pe“z[m —42 0 0 ] (3.11)

Xef 17300 —-4200 211 -21100

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

- 1 -1 0 O
open _
Sw_[l 1 _1]. (3.12)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

07
BB = ey T

and the equilibrium points satisfy

me = %Pe, ﬁ +ag = om, = 577135,. (3.13)
In order to make a proper comparison with the previous case, we need to choose the
parameters so that the equilibrium concentrations m,, P, match those of the open
loop system. We can do this by modifying the promoter strength « and/or the RBS
strength, which is proportional to «, so that the second formula in equation (3.13)
is satisfied or, equivalently, choose the parameters for the open loop case so that
they match the closed loop steady state protein concentration (see Example 2.2).
Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.13). The state,
dynamics and parameters are given by

F(P)—om

x:(m P), f(x’e):[Km—yP]’ 9=(ao 0 K ¥y a n K).
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Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

of _ (-6 F'(P,) af _(1 -m, O O OF/da OF/on OF/OK
ox | B -y |’ 0 |0 0 m, -P. 0 0 0o |’

where again the parameters are taken to be at their nominal values and the deriva-
tives are evaluated at the equilibrium point. From this we can compute the sensi-
tivity matrix as

Y ym __mF’ PF’ _YOF|/0a  _ydF[dn _ ydF|dK

S _ yo—kF'  yo—«kF’ yo—kF’'  yo—kF’ yO—KkF’ yO—KkF’ yOo—KkF’
R km___ om 5P _kdF/da; _KkOF/on _ xdFJIK |’

yo—kF’'  yo—kF’ yo—kF’"  yo—kF’ yo—kF’ yo—kF’ yo—kF’

where F’ = 0F/OP and all other derivatives of F are evaluated at the nominal
parameter values and the corresponding equilibrium point. In particular, we take
nominal parameters as 6 = (5- 1074,0.005,0.115,0.001, 800, 2,0.025).

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

_|me| _[0.239
Ye=lp) T 239
and the sensitivity matrix is

gelosed (76 —18 <115 115 0.00008 -0.45 534
Wl 17611 -1816 90  —9080. 0.008 45 534/

The scaled sensitivity matrix becomes

gelosed [0.159 -0.44 -0.56 056 0.28 -3.84 0.56] (3.14)
e 0.159 -0.44 044 -044 028 -3.84 0.56]° ’
Comparing this equation with equation (3.12), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2—4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanism (particularly n). \Y

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(z)/d6,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters 6. This can be used, for example, to understand
how we can change the parameters to obtain a desired behavior or to determine the
most critical parameters that determine a specific dynamical feature of the system
under study.
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Let x(t,6p) be a solution of the nominal system
X=f(x,00,u),  x(0)=xo.
To compute dx/df, we write a differential equation for how it evolves in time:

d(dx\ d (dx\ d _ofdx of
E(%)_de(dt)_de(f(x’g’”))_axd9+ae‘

This is a differential equation with n X m states given by the entries of the ma-
trix S ¢(t) = dx(t)/d6 and with initial condition § , »(0) = O (since changes to the
parameters do not affect the initial conditions).

To solve these equations, we must simultaneously solve for the state x and the
sensitivity S, o (whose dynamics depend on x). Thus, letting

0 0
M(t,0p) := 6—£(x,6’,u) , N(t,6p) := a—{;(x,e,u)

b
x=x(t,00),6=6p x=x(t,60),6=6p

we solve the set of n + nm coupled differential equations

dx deg
T ) , ’
f(x,60,u) ”

dr
with initial condition x(0) = xp and S , 4(0) = 0.

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case in which we are at an equilibrium point and the dynamics for S g are
stable, the steady state solution of equation (3.15) is identical to that obtained in
equation (3.9). However, equation (3.15) is much more general, allowing us to de-
termine the change in the state of the system at a fixed time 7', for example. This
equation also does not require that our solution stay near an equilibrium point; it
only requires that our perturbations in the parameters are sufficiently small. An ex-
ample of how to apply this equation to study the effect of parameter changes on an
oscillator is given in Section 5.4.

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI and the MATLAB SimBiology toolbox.

= M(1,600)S 9+ N(1,60), (3.15)

Adaptation and disturbance rejection

In this section, we study how systems can keep a desired output response even
in the presence of external disturbances. This property is particularly important
for biomolecular systems, which are usually subject to a wide range of pertur-
bations. These perturbations or disturbances can represent a number of different
physical entities, including changes in the circuit’s cellular environment, unmod-
eled/undesired interactions with other biological circuits present in the cell, or pa-
rameters whose values are uncertain.
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point of half-maximal value of the Hill function 8/(1 + (A/Ky4)") to the right. As a
consequence, the nullclines will intersect at one point only, in which the value of B
is high and the value of A is low (Figure 5.4a). The opposite will occur when u; is
high and u; = 0, leading to only one intersection point in which B is low and A is
high (Figure 5.4b).

5.4 The repressilator

Elowitz and Leibler constructed an oscillatory genetic circuit consisting of three
repressors arranged in a ring fashion and called it the “repressilator” [26] (Fig-
ure 5.1). The repressilator exhibits sinusoidal, limit cycle oscillations in periods of
hours, slower than the cell-division time. Therefore, the state of the oscillator is
transmitted between generations from mother to daughter cells.

A dynamical model of the repressilator can be obtained by composing three
transcriptional modules in a loop fashion. The dynamics can be written as

d d d

TA PO —ma, B o FyA)-oms,  oC = F3(B)-omc,

dA A dB B dC c )

— = KMp — — = kmp — — = Kmc —

dl‘ KMmAa y 5 d[ Kmp y s dt Kmc 7 ’
where we take

Fi(P) = Fy(P)= F3(P) = F(P) = —————
((P)= Fa(P) = F3(P) = F(P) = [

and assume initially that the parameters are the same for all the three repressor
modules. The structure of system (5.7) belongs to the class of cyclic feedback
systems that we have studied in Section 3.3. In particular, the Mallet-Paret and
Smith Theorem 3.5 and Hastings et al. Theorem 3.4 can be applied to infer that if
the system has a unique equilibrium point and this equilibrium is unstable, then the
system admits a periodic solution. Therefore, to apply these results, we determine
the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
Letting 5 = (x/6), we obtain

. ﬁFl(Ceq) _ ,BFZ(Aeq) _ BFS(Beq)
Aeq——, Beq— —— eq = T >
Y Y Y

which combined together yield

Aeq = éFl (EFS (EFZ(Aeq))) = g(Aeq)'
Y Y Y

The solution to this equation determines the set of equilibria of the system. The
number of equilibria is given by the number of crossings of the two functions
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hi(A) = g(A) and hy(A) = A. Since hy is strictly monotonically increasing, we ob-
tain a unique equilibrium if /; is monotonically decreasing. This is the case when
g'(A)=dg(A)/dA <0, otherwise there could be multiple equilibrium points. Since

we have that
3

sign(g'(4)) = | [ sign(F/(a)),

i=1

it follows that if H?zlsign(F 7(A)) <0 the system has a unique equilibrium. We call
the product H?:l sign(F;(A)) the loop sign.

It follows that any cyclic feedback system with negative loop sign will have a
unique equilibrium. In the present case, system (5.7) is such that F} <0, so that the
loop sign is negative and there is a unique equilibrium. We next study the stability
of this equilibrium by studying the linearization of the system.

Letting P denote the equilibrium value of the protein concentrations for A, B,

and C, the Jacobian matrix of the system is given by

= 0 0 0 0 Fi(P)
K —y 0 0 0 0
I 0 Fy(P) -6 0 0 0

0 0 K -y 0 0o |’

0 0 0 FiP) -6 0

0 0 0 0 K —y

whose characteristic polynomial is given by
3
det(sI —J) = (s+9)* (s +6)° —&° ]_[F;(P). (5.8)

i=1

The roots of this characteristic polynomial are given by
(s+yY)(s+0)=r,

in which r € {kF’(P),~(xF'(P)/2)(1 =i V3),~(kF’(P)/2)(1 +iV3)} and i = V-1
represents the imaginary unit. In order to invoke Hastings et al. Theorem 3.4 to
infer the existence of a periodic orbit, it is sufficient that one of the roots of the
characteristic polynomial has positive real part. This is the case if

n(P"'/K")

K|IF'(P)| > 26, |[F"(P)| = QW’

in which P is the equilibrium value satisfying the equilibrium condition

B«
= Tv @
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Figure 5.5: Parameter space for the repressilator. (a) Repressilator diagram. (b) Space of
parameters that give rise to oscillations. Here, we have set K = 1 for simplicity.

One can plot the pair of values (n,3/y) for which the above two conditions are
satisfied. This leads to the plot of Figure 5.5b. When n increases, the existence of
an unstable equilibrium point is guaranteed for larger ranges of 8/y. Of course,
this “behavioral” robustness does not guarantee that other important features of the
oscillator, such as the period, are not changed when parameters vary.

A similar result for the existence of a periodic solution can be obtained when
two of the Hill functions are monotonically increasing and only one is monotoni-
cally decreasing:

a(P/K)" _ a(P/K)"

hn = “treor DO e

o
[EGT A
That is, two interactions are activations and one is a repression. We refer to this
as the “non-symmetric” design. Since the loop sign is still negative, there is only
one equilibrium point. We can thus obtain the condition for oscillations again by
establishing conditions on the parameters that guarantee that at least one root of
the characteristic polynomial (5.8) has positive real part, that is,

K(IF|(P3)Fy(P)F, (PN > 26, (5.9)

in which Py, P,, P3 are the equilibrium values of A, B, and C, respectively. These
equilibrium values satisfy:

_B_(P/K) p. B _(P/K)

B p_(P/K)" B
2T Y1+ (P K T Y1+ (Py/K)

Pi(1+(P3/K)") =~.
Y

Using these expressions numerically and checking for each combination of the
parameters (n,83/y) whether (5.9) is satisfied, we can plot the combinations of n
and S/y values that lead to an unstable equilibrium. This is shown in Figure 5.6b.
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Figure 5.6: Parameter space for a loop oscillator. (a) Oscillator diagram. (b) Space of pa-
rameters that give rise to oscillations. As the value of 7 is increased, the range of the other
parameter for which a periodic cycle exists becomes larger. Here, we have set K = 1.

From this figure, we can deduce that the qualitative shape of the parameter space
that leads to a limit cycle is the same in the repressilator and in the non-symmetric
design. One can conclude that it is then possible to design the circuit such that the
parameters land in the filled region of the plots.

In practice, values of the Hill coefficient n between one and two can be obtained
by employing repressors that have cooperativity higher than or equal to two. There
are plenty of such repressors, including those originally used in the repressilator
design [26]. However, values of n greater than two may be hard to reach in practice.
To overcome this problem, one can include more elements in the loop. In fact, it is
possible to show that the value of n sufficient for obtaining an unstable equilibrium
decreases when the number of elements in the loop is increased (see Exercise 5.6).
Figure 5.7a shows a simulation of the repressilator.

In addition to determining the space of parameters that lead to periodic trajec-
tories, it is also relevant to determine the parameters to which the system behavior
is the most sensitive. To address this question, we can use the parameter sensitivity
analysis tools of Section 3.2. In this case, we model the repressilator Hill functions
adding the basal expression rate as it was originally done in [26]:

a

F1(P):F2(P):F3(P):m+ao.

Letting x = (ma,A,mp, B,mc,C) and 6 = (a9, ,«,y, @, K), we can compute the sen-
sitivity S ¢ along the limit cycle corresponding to nominal parameter vector 6y as
illustrated in Section 3.2:

ds vy
dt

= M(t,60)S x9 + N(t,6p),
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Figure 5.7: Repressilator parameter sensitivity analysis. (a) Protein concentrations as func-
tions of time. (b) Sensitivity plots. The most important parameters are the protein and
mRNA decay rates y and 6. Parameter values used in the simulations are @ = 800 nM/s,
@y =5x10"* nM/s, § =5.78x 1073 s7!, y = 1.16 x 1073 s, k = 0.116 s}, n = 2, and
K =1600 nM.

where M(t,6p) and N(¢,6y) are both periodic in time. If the dynamics of S g are
stable then the resulting solutions will be periodic, showing how the dynamics
around the limit cycle depend on the parameter values. The results are shown in
Figure 5.7, where we plot the steady state sensitivity of A as a function of time. We
see, for example, that the limit cycle depends strongly on the protein degradation
and dilution rate 9, indicating that changes in this value can lead to (relatively)
large variations in the magnitude of the limit cycle.

5.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 5.1. The activator
A takes two inputs: the activator A itself and the repressor B. The repressor B
has the activator A as the only input. Let m, and my represent the mRNA of the
activator and of the repressor, respectively. Then, we consider the following four-
dimensional model describing the rate of change of the species concentrations:

d d

A _Fi(AB)=6ams, 2 = Fy(A)—6pmg,
dt dt (5.10)
dA A dB B ’
_ = MA — , —_— = mg — 5
di KAMA —YVA dr KpMmpB —7YB

in which the functions F| and F; are Hill functions and given by
A/Ky)" + A/KA)" +
Fi(A.B) = ap(A/KQ)" +aao A= ap(A/Kp)" +apo
1+(A/Ka)"+(B/Kp)" 1+ (A/Kp)"

The Hill function F; can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor. The Hill function F has the
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