A Duality View of Spectral Methods for Dimensionality Reduction

Lin XiaoJun SunMicrosoft ResearchStanford

In Sun Stephen Boyd Stanford University

Connection II Workshop Caltech August 17, 2006

Dimensionality reduction

problem: extract low dimensional structure from high dimensional data

goal: discover low dimensional structure, compute faithful representations

Linear versus nonlinear

PCA: Principle Component Analysis MDS: metric MultiDimensional Scaling • nonlinear • solution?

Nonlinear dimensionality reduction

• spectral methods

- Isomap: (Tenenbaum, de Silva & Langford, 2000)
- locally linear embedding (Roweis &Saul, 2000)
- Laplacian eigenmaps (Belkin & Niyogi, 2002)
- Hessian eigenmaps (Donoho & Grimes, 2003)
- maximum variance unfolding (Weinberger & Saul, 2004)
- local tangent space alignment (Zhang & Zha, 2004)
- geodesic nullspace analysis (Brand, 2004)
- conformal eigenmaps (Sha & Saul, 2005)
- similar computational structure:
 - establish k-nearest neighbor graph
 - construct a square matrix: dense or sparse
 - eigenvalue decomposition: top of dense or bottom of sparse
- **question:** what are the connections between these methods?

Outline

- brief overview of some spectral methods
- duality theory of maximum variance unfolding (MVU)
- a unified duality view of spectral methods
 - MVU and Isomap
 - MVU and locally linear embedding
 - MVU and Laplacian eigenmap
- connections to Markov chains and networked systems

Principle component analysis (PCA)

• goal: preserve covariance structure

minimize $\sum_{i=1}^{n} \|x_i - Px_i\|^2$

P: projection matrix, rank r < d

• equivalently, maximize projected variance

$$X = [x_1 \cdots x_n], \ x_i \in \mathbf{R}^d$$
(assume $\sum x_i = 0$)

maximize
$$\sum_{i=1}^{n} \|Px_i\|^2 = \sum_{i=1}^{n} \|y_i\|^2 = \frac{1}{2n} \sum_{i,j=1}^{n} \|y_i - y_j\|^2$$

solution: SVD
 $P = V_r V_r^T, \quad y_i = V_r^T x_i$
 $n \begin{cases} \sum_{i=1}^{n} U_i \sum_{i,j=1}^{n} V_i^T \\ \sum_{i=1}^{n} U_i \sum_{i,j=1}^{n} V_i^T \\ \sum_{i=1}^{n} U_i \sum_{i,j=1}^{n} V_i^T \\ \sum_{i,j=1}^{n} \sum_{i,j=1}^$

Metric multidimensional scaling (MDS)

• goal: find $y_1, \ldots, y_n \in \mathbf{R}^r$ to faithfully preserve inner products

minimize
$$\sum_{i,j} (x_i^T x_j - y_i^T y_j)^2 = \|X^T X - Y^T Y\|_F^2$$

- solution:
 - compute Gram matrix from pair-wise distances $D_{ij} = ||x_i x_j||^2$

$$G = X^T X = -\frac{1}{2} \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right) D \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right)$$

- eigenvalue decomposition of Gram matrix

Isomap

• PCA and MDS only work for linear projection, need nonlinear extensions

- key idea: use geodesic instead of Euclidean distance in MDS
 - construct adjacency graph, e.g., connect k-nearest neighbors
 - estimate geodesic distance by shortest path: e.g., Djikstra's algorithm
 - use geodesic distances to compute Gram matrix ${\cal G}$ in MDS

Locally linear embedding (LLE)

key idea: explore local linearity: $x_i \approx \sum_{j \in \mathcal{N}_i} W_{ij} x_j$ (say, in tangent space)

 \bullet least-square fitting to find sparse matrix W

minimize $\sum_{i=1}^{n} \left\| x_i - \sum_{j \in \mathcal{N}_i} W_{ij} x_j \right\|^2$ subject to $\sum_{j \in \mathcal{N}_i} W_{ij} = 1, \quad i = 1, \dots, n$

• least-square reconstruction of y_1, \ldots, y_n

minimize
$$\sum_{i=1}^{n} \left\| \boldsymbol{y}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \boldsymbol{y}_{j} \right\|^{2}$$
, subject to $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{T} = I_{r}$

solution: compute bottom r + 1 eigenvectors of $(I - W)^T (I - W)$, use r of them to reconstruct y_i (discard 1 associated with $\lambda_{\min} = 0$)

Laplacian eigenmap

key idea: map nearby inputs to nearby outputs, preserve locality on graph

• assign weights on edges $\{i, j\} \in \mathcal{E}$

$$W_{ij} = 1$$
 or $W_{ij} = \exp(-\beta \|x_i - x_j\|^2)$

Laplacian:
$$L_{ij} = \begin{cases} -W_{ij} & \{i, j\} \in \mathcal{E} \\ \sum_{k \in \mathcal{N}_i} W_{ik} & i = j \\ 0 & \text{otherwise} \end{cases}$$

• find low dimensional representations

minimize
$$\sum_{\{i,j\}\in\mathcal{E}} W_{ij} \|\boldsymbol{y}_i - \boldsymbol{y}_j\|^2$$
, subject to $\sum_{i=1}^n L_{ii} \boldsymbol{y}_i \boldsymbol{y}_i^T = I_r$

• solution: construct y_i 's from r bottom (generalized) eigenvectors of L

Maximum variance unfolding (MVU)

- compute *k*-nearest neighbor graph
- QP formulation (nonconvex)

max.
$$\sum_{i=1}^{n} \|y_i\|^2$$

s. t. $\|y_i - y_j\| = \|x_i - x_j\|, \{i, j\} \in \mathcal{E}$
 $\sum_{i=1}^{n} y_i = 0$

• SDP formulation (convex): let $K_{ij} = y_i^T y_j$

Swissroll example

n = 1000, k = 10

lsomap

Laplacian eigenmap

Quest of unified views

myth: these different methods are capable of producing similar results

- MDS, Isomap, MVU
 - try to preserve **global** pairwise (geodesic) distances
 - use top eigenvectors of dense matrices
 - can estimate dimensionality from number of significant eigenvalues
- LLE, Laplacian eigenmap
 - try to preserve **local** geometric relationships
 - use **bottom** eigenvectors of **sparse** matrices
 - cannot estimate dimensionality from gap of eigenvalues

toward unified views

- each as an instance of kernel PCA (Ham, Lee, Mika, & Schölkopf, 2004)
- semidefinite programming duality theory (Xiao, Sun, & Boyd, 2006)

MVU duality theory

• primal problem

 \longleftrightarrow

dual problem

- max. Tr K s. t. $K = K^T \succeq 0$, $\mathbf{1}^T K \mathbf{1} = 0$ $K_{ii} + K_{jj} - 2K_{ij} = D_{ij}$, $\{i, j\} \in \mathcal{E}$ min. $\sum_{\{i, j\} \in \mathcal{N}_i} D_{ij} W_{ij}$ s. t. $\lambda_2(L) \ge 1$
- optimality conditions: primal-dual feasibility, and complementarity

$$L^{\star}K^{\star} = K^{\star} \implies \begin{cases} \text{top of dense } K^{\star} = \text{bottom of sparse } L^{\star} \\ r \leq \text{rank } K^{\star} \leq \text{multiplicity of } \lambda_2(L^{\star}) \end{cases}$$

Connection between MVU and Isomap

• Isomap: use geodesic instead of Euclidean distance in MDS

• Interpretation: try to construct optimal solution to MVU directly

$$\begin{aligned} & \text{maximize} \quad \sum_{i=1}^{n} \|y_i\|^2 = \frac{1}{2n} \sum_{i,j=1}^{n} \|y_i - y_j\|^2 \leq \frac{1}{2n} \sum_{i,j=1}^{n} \text{geod}(i,j)^2 \\ & \text{subject to} \quad \sum_{i=1}^{n} y_i = 0, \qquad \|y_i - y_j\| = \|x_i - x_j\|, \quad \{i,j\} \in \mathcal{E} \end{aligned}$$

 if data manifold isometric to convex subset of Euclidean space, then Isomap and MVU give same result in limit (increase sampling density)

Connection between MVU and LLE

- key idea of LLE: locally linear approximation: $x_i \approx \sum_{j \in \mathcal{N}_i} W_{ij} x_j$
 - least-square fitting to find sparse matrix \boldsymbol{W}

minimize
$$\sum_{i=1}^{n} \left\| x_i - \sum_{j \in \mathcal{N}_i} W_{ij} x_j \right\|^2$$
, subject to $\sum_{j \in \mathcal{N}_i} W_{ij} = 1, \quad i = 1, \dots, n$

- least-square reconstruction of $y_1, \ldots, y_n \in \mathbf{R}^r$

minimize
$$\sum_{i=1}^{n} \left\| \boldsymbol{y}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \boldsymbol{y}_{j} \right\|^{2}$$
, subject to $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{T} = I_{r}$

• interpretation from MVU optimality conditions. Let $K^{\star} = Y^T Y$

$$L^*K^* = K^* \implies L^*Y^T = Y^T \implies (L_{ii}^* - 1)y_i = \sum_{i \in \mathcal{N}_i} W_{ij}^* y_j$$

• however, computationally very different . . . needs further investigation

Connection between MVU and Laplacian eigenmap

• consider dual MVU problem

$$egin{array}{ll} {
m minimize} & \sum_{\{i,j\}\in \mathcal{E}} W_{ij} \|x_i-x_j\|^2 \ {
m subject to} & \lambda_2(L) \geq 1 \end{array}$$

$$L_{ij} = \begin{cases} -W_{ij} & \{i, j\} \in \mathcal{E} \\ \sum_{k \in \mathcal{N}_i} W_{ik} & i = j \\ 0 & \text{otherwise} \end{cases}$$

• Laplacian eigenmap simply use feasible solutions to dual MVU problem

 $W_{ij} = 1$ or $W_{ij} = \exp(-\beta ||x_i - x_j||^2)$ (satisfy $\lambda_2(L) \ge 1$ by scaling)

• construct $y_1, \ldots, y_n \in \mathbf{R}^r$ from r bottom eigenvectors of L

minimize
$$\sum_{\{i,j\}\in\mathcal{E}} W_{ij} \|y_i - y_j\|^2$$
, subject to $\sum_{i=1}^n y_i y_i^T = I_r$

Swissroll example

n = 1000, k = 10

lsomap

Laplacian eigenmap

A unified duality view

- connections between spectral methods
 - Isomap: construct (approximate) solution to primal MVU problem
 - LLE: motivation interpreted from MVU optimality conditions
 - Laplacian eigenmap: feasible dual MVU solutions, can be optimized
- key insights from MVU optimality condition $L^{\star}K^{\star} = K^{\star}$
 - top eigenspace of dense K^{\star} = bottom eigenspace of sparse L^{\star}
 - embedding dimension $r \leq \text{rank}$ of $K^{\star} \leq \text{multiplicity}$ of $\lambda_2(L^{\star})$
 - explains different capability of estimating dimensionality
- further connections to Markov chains and network design

MVU duality theory

• primal problem

 \longleftrightarrow

dual problem

• an equivalent dual problem (solutions related by simple scaling)

maximize $\lambda_2(L)$ subject to $\sum D_{ij}W_{ij} \leq 1$ $\{i,j\} \in \mathcal{N}_i$

Continuous-time Markov chains

- assign transition rate $w_{ij} \ge 0$ on each edge
- weighted Laplacian matrix L

$$L_{ij} = \begin{cases} -w_{ij} & \{i,j\} \in \mathcal{E} \\ 0 & \{i,j\} \notin \mathcal{E} \\ \sum_k w_{ik} & i = j \end{cases}$$

eigenvalues: $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$

- probability distribution $\pi(t)$ satisfy

$$\frac{d\pi(t)}{dt} = -L\pi(t)$$

convergence:
$$\sup_{\pi(0)} \|\pi(t) - \mathbf{1}/n\| \le c \ e^{-\lambda_2 t}$$

Continuous-time FMMC problem

- objective function nonlinear, nondifferentiable, but concave
- total rate constraints, weighted by edge lengths d_{ij}^2
- discrete-time version: fastest random walk on a graph

More connections

- fastest equilibration of electrical charge
 - $\frac{dq(t)}{dt} = -Lq(t)$

• maximize lowest natural frequency of mechanical systems

$$\frac{d^2x(t)}{dt^2} = -Lx(t)$$

$$\begin{array}{c} k_{13} & k_{46} \\ \hline m & m \\ k_{12} & k_{23} & k_{34} & k_{45} \\ \hline 1 & m & 2 & m & 3 & m & 4 & m & 5 & 6 \end{array}$$

• optimal design of inhomogeneities of physical medium

Connection to distributed computing

- initial queue lengths $x_i(0)$
- every server to process $\frac{1}{n} \sum x_i(0)$
- distributed algorithm

$$x_i(t+1) = x_i(t) + \sum_{j \in \mathcal{N}_i} w_{ij} \left(x_j(t) - x_i(t) \right)$$

- design local parameters w_{ij} to achieve global performance
 - guarantee convergence; obtain fastest convergence
 - robustness to unreliable links, noises, topology changes

Connection to distributed computing

• distributed average consensus

$$x_i(t+1) = x_i(t) + \sum_{j \in \mathcal{N}_i} w_{ij} \Big(x_j(t) - x_i(t) \Big)$$

- convergence conditions, robustness
- optimal design for fastest convergence
- distributed coordination, synchronization, and flocking

Tsitsiklis (1984), Jadbabaie, Lin & Morse (2003), Olfati-Saber & Murray (2004), Moreau (2005), Xiao, Boyd & Lall (2005), etc.

Duality as unifying tool

ubiquitous networks

Image Credit: Lawrence Berkeley National Lab

Out (Stot)
 Emende time
 Pages bet
 Pages be

data, data, data!