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Outline

- Motivation for the study of fundamental limits in Engineering.

- Networked control systems as a test-bed for research in control and
communications.

- Brief description of Bode's integral formula in discrete time.

-Derivation of a conservation law and its relation to common performance
measures. (Relation to Bode's integral)

- A universal bound of disturbance attenuation in the presence of finite
capacity feedback.

- Extension of Bode's integral in the presence of finite capacity disturbance
preview.

- Conclusions



Importance of Fundamental Limi

ts of Performance
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Two Examples in Engineering
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Motivation for studying communication and controls
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Bode’s Integral Limitation



Bode’s Integral Limitation

Linear Feedback Scheme:

disturbance process
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LTI Control [

What can we do reject disturbances?



Bode’s Integral Limitation: A sensitivity-like function

Measuring performance ... o ;
d y
| LTI Control

log F, (a))

Spectrum of the error Spectrum of the disturbance




Bode’s Integral Limitation: A sensitivity-like function

Measuring performance ... ; o ; y
l = |

F 09, .-LVTI Control
Sf,d(w)= ( ) - Sensitivity-like Function sl
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Bode’s Integral Limitation

We can’t push the log-average down

/e

- %fﬂ log Sid (a))z’a) =2 ; log‘polel.
@\m T unstable poles
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Bode (1945) for continuous time
S. Hara (1989) for discrete-time
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Bode’s Integral Limitation

A

Water-bed effect

ém“ (Conservation law)
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Bode’s Integral Limitation: Extensions

Extensions: multivariable, time-varying ...

* Freudenberg (88), Seron, Braslavsky, Goodwin (97)

Information Theoretic Interpretation: Extensions to classes of Non-Linear Systems

« Zang and Iglesias, (96) and Jonckheere (92)

Deterministic approach

* Yi, Goncalves, Ingals, Sauro, Doyle (in
preparation)
Using theories related to Bode’s integral to design coding schemes.

* Elia, N.
New information theoretic interpretation and extension for arbitrary feedback

* Martins & Dahleh (2004), Martins Ph.D. dissertation
» Martins, Dahleh and Doyle (2005)



Bode’s Integral Limitation: Preliminary Questions

X,

>O P >
u Arbitrary |
causal

*P is finite dimensional, linear, time-invariant, single input and single
output

* if the state of P is represented by x(k)e&)%” then the initial state
X, = x(O) is a random variable.



Bode’s Integral Limitation: Preliminary Questions

X,

>0 P >

u Arbitrary |
causal

Assuming that d and e are asymptotically stationary, will the following
hold for arbitrary causal feedback ?

Question
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Bode’s Integral Limitation: Preliminary Questions

X,

»O P >

u Arbitrary |
causal

Assuming that d and e are asymptotically stationary, will the following
hold for arbitrary causal feedback ?

1 2
= f ] logs§;, (a))z’a) > 2mm;e log| pole,

poles

Question

Sed ((x))= ?:,—Ezg

Answer:
Using optimal linear one-step prediction theory (Kolmogorov), we can show

that the answer is yes. This result holds regardless of the distribution of d.



Bode’s Integral Limitation: Preliminary Questions

: o

» P »O0—

u Arbitrary
causal

What happens if the disturbance enters at the output (tracking) ?

e

Assuming that d and e are asymptotically stationary, will the following
hold for arbitrary causal feedback ?

The answer is: it depends on the distribution of d. In general the answer is NO.



Bode’s Integral Limitation: What are we searching for ?

We seek a Theory that:

» Explains the fundamental limits of feedback for different configurations
in a unified fashion.
(Information flow interpretation)

» Quantifies the role of the probability distribution of the disturbance.

(maximum entropy principle)

* Allows for the analysis of other frameworks relevant for networked
control. Such as the introduction of side information and information-rate

constraints. _ _ _ _
(Algebraic properties of mutual information)

Using information theory ...



Fundamental limits of feedback: An Information Theoretic Approach



Differential Entropy

Consider the stochastic process:

a' =(a(0),-,a(k))

ha' )==[. p( og, p, (r Jiy

(Differential Entropy)



Differential Entropy

Consider the stochastic process:
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Differential Entropy

Consider the stochastic process:
a' = (a(0),--,a(k))
ha* )= na(e) 2" e na*')

" zh( a(i)|a"™ Jr h(a(0)

h, (a) limsup——~ = limsup

k— k k—o0 k

(Entropy rate)



A conservation law using differential entropy

Arbitrary deterministic

Causal w/ delay

nd* )= ne')



A conservation law using differential entropy

d O € |Arbitrary deterministia >
Causal w/ delay
u T
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Proof:



A conservation law using differential entropy

d O € |Arbitrary deterministia >
Causal w/ delay
u T

ha' )= n*)
ha) at )= nlal) ut )
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nlek) ut et )= nlee ) ')

Proof:



A conservation law using differential entropy

I Ly [
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A conservation law using differential entropy

X, LTI SISO with random initial state

>0 P >

u
Arbitrary |

(Martins Ph.D. Thesis, 04) h(ek )Z h(dk )+ I (Xo;ek )

Mutual information

.k
h(e)= i ()+ nrgnffxe_ae)



A conservation law using differential entropy

X, LTI SISO with random initial state

>0 P >

u 4
Mutual information
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A conservation law using differential entropy

X, LTI SISO with random initial state

P >

>
u
I Arbitrary |
Mutual information

e e hla Yo 1siet )

h(e)=h (d)+11m1nf1x(;\:e )

Stabilityl Baillieul

h(e)=h (d)+ ;mg\poze,.\ Tatikonda

poles
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X, LTI SISO with random initial state

d e

>

>T P
u 4_

What can we do with this formula?

h, (e)z h, (d)+ ; log‘ pole,

poles



Differential Entropy: second-moment bounds

a* =(a(0),-,a(k))

na' )=—f, b, Nog, p,. (v iy

h(a" )s %log((Zne)(‘Zak

)S % 2 log(ZneGj(i))

Equality is achieved if a* is Gaussian /
Equality is achieved if a(i) are uncorrelated



A conservation law using differential entropy: lower bound on the variance gain

X, LTI SISO with random initial state

P >
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Choose d i.i.d. Gaussian with variance 05 :
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Equality is achieved if is Gaussian

Equality is achieved if are uncorrelated

pole,



A conservation law using differential entropy: lower bound on the variance gain

X, LTI SISO with random initial state

P >

O

h, (e)z h, (d)+ ; log‘polel.

poles

Choose d i.i.d. Gaussian with variance 05 :

. 2
limsupo,, =0, II |pole,
k—>o0 unstable poles
/ t ali)
: . 2
Equality is achieved if is Gaussian llm Sup Gj(k) > ()‘5 ( H polel_ ‘ —_ 1)

Equality is achieved if are uncorrelated unstable poles
k— p

(Braslavsky, Middleton, Freudenberg 04)



Differential Entropy: power spectral bound

H

I’l\d

h, (a) lim sup ! lim sup

k— k—o00 k

ha* 2= na(e) 2" =)

= (a(0),0 ,a(k))

(Entropy rate)

Under Asymptotic stationarity:
h, (a)_ f log(2meF, (w )dw

Equality is achieved if a is Gaussian



A conservation law using differential entropy: extension of Bode’s integral formula

X, LTI SISO with random initial state

.
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poles
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Choose d Gaussian, wide-sense asympt. stationary:
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A conservation law using differential entropy: extension of Bode’s integral formula

X, LTI SISO with random initial state

ey
Sez,d(w)= 2223

h, (e)z h, (d)+ ; log‘polel.

poles

Choose d Gaussian, wide-sense asympt. stationary:

f log(2neF. (w ))iw = f log(2neF, (w )llw + 47 ; log| pole,

poles

1 JT
g _j; logS?, (Vo = ZWW; log|pole,

poles
(Bode Integral formula!)



Differential Entropy: bounds

a' =(a(0),-,a(k))

na' )=—f, b Nog, p,. (v iy

Upper-bound based
h(ak )s klog(@)

c—ldzinf{(ES‘{Jr | PQa(i) > x)= 0, iE{l,...,k}}



Differential Entropy

A few bounds:

a' =(a(0),-,a(k))

ha' )==[. p( og, p, (r Jiy

Upper-bound based

h(ak )s klog(a)

e

Achieved if a" is uniformly distributed



A Conservation Law

X, LTI SISO with random initial state
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Choose d i.i.d. uniformy distributed between —dandd :
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‘ k—>0 unstable poles

polel.‘



A Conservation Law

X, LTI SISO with random initial state

!
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h,(e)=h, (d)+|1%log‘)» (4)

Choose d i.i.d. uniformy distributed between —dandd :

limsupe(k)=d II

k—>0 unstable poles
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Limits in the presence of finite capacity feedback



Preliminary notions: Shannon Capacity

Information capacity is the supremum of the bit-rate for which information
can be transmitted through a medium:

Examples:

Bit stream Bit stream
000111101011... T_— 000111101011...
— ENC > _T > » DEC —
quantizer

with M levels

If N(¢) represents the total number of bits transmitted up to time t then we know that

N(t)

sup——= < log, M «—— Capacity
t [



Preliminary notions: Shannon Capacity

Information capacity is the supremum of the bit-rate for which information
can be transmitted through a medium:

Examples:

o O st
000111101011... z\t ) |
— ENC > »&——> DEC —

Gaussian
Channel

If N(r) represents the total number of bits transmitted up to time t then we know that

[ N() 1 o’
sup t( )5510g2(1+ G;) <— Shannon Capacity

5 ¢

\P[Error(t )]e 0

v




Preliminary notions

Data-processing inequality

Shannon Capacity Shannon Capacity

E > Cl > C2

End-to-End Shannon Capacity: C, < min CI,CZ}



Limits in the presence of finite capacity feedback
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may need D/A Digital Controller may need
converter has finite alphabet quantization

C 7 < OO Finite Capacity Feedback



Limits in the presence of finite capacity feedback

1‘0 LTI SISO with random initial state
d e
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Finite capacity feedback has impact on disturbance attenuation:

_Cf

New Bound % :[t min{og(Se’ p (a)))O}la) > unm;e log‘ pole,

poles



Limits in the presence of finite capacity feedback

Xy LTI SISO with random initial state
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Cf<oo

Finite capacity feedback has impact on disturbance attenuation:

_Cf

New Bound % :[t min{og(Se’ p (a)))O}la) > unm;e log‘ pole,

poles

Original Bode formula resulting from Causality

oo g
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Limits in the presence of finite capacity feedback
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Limits in the presence of a finite capacity preview



Motivation for Using Early Warning Information in a Feedback Loop

Feedback in the Presence of a Remote Preview

1‘0

Physical delay

dr d e y
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Motivation for Using Early Warning Information in a Feedback Loop

Feedback in the Presence of a Remote Preview
X,
Physical delay l

dp d

M >, »O © P
Tu

_» RPS —| K

Remote Preview System

Can we beat the standard (no RPS) limitation?:

C @) B@) L 2 Ylog|pol
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Motivation for Using Early Warning Information in a Feedback Loop

Feedback in the Presence of a Remote Preview
X,
Physical delay l

dp d

M M mm > © P >
fu

_» RPS —| K

Remote Preview System

Can we beat the standard (no RPS) limitation?:

s @) Be) L 2 Slog|pol
Se’d (w)_ Fd (O!)) 2‘7-5 :I;; Og Se,d (w)jw ) unsta;epos;g‘po ei‘

What can we do, subject to the following constraint?

Capacity of the comm.



Importance of studying the limits of remote preview

Early warning systems

Navigation systems




Motivation for Using Early Warning Information in a Feedback Loop

The Linear, Time-Invariant and Gaussian Case
w and q are white and Gaussian E and K are LTI

1‘0
Physical delay
dr d e y
YoM o[ O =
fu

Tq (AWGN)



Motivation for Using Early Warning Information in a Feedback Loop

The Linear, Time-Invariant and Gaussian Case
w and q are white and Gaussian E and K are LTI

Xy
W dp Physical delay d e l y
— M > >O P
fu
\" r
ae-K]
Tq (AWGN)
Can we beat the standard (no Channel) limitation?:
F (w |
S ()= F;—Ewg P _f” logS;, (0w = 2unsta;piz§‘ pole,



Motivation for Using Early Warning Information in a Feedback Loop

The Linear, Time-Invariant and Gaussian Case
w and q are white and Gaussian E and K are LTI

Xy
W dp Physical delay d e l y
— M > >O P
fu
\" r
ae-K]
Tq (AWGN)
Can we beat the standard (no Channel) limitation?:
F (w |
S ()= F;—Ewg P _f,, logS;, (0w = 2unsta;€piz§‘ pole,

What can we do with the following power constraint?

sup Var(v(k)) <1



Motivation for Using Early Warning Information in a Feedback Loop

The Linear, Time-Invariant and Gaussian Case

Xy
dp Physical delay d a e l y
M > —O——0O P

R b,

LEmaio

E, D and H are LTI

—_————m -

What can we do with the following power constraint?

sup Var(v(k)) <1



Motivation for Using Early Warning Information in a Feedback Loop

The Linear, Time-Invariant and Gaussian Case

Xy
dp Physical delay d a e l y
M > —>Q—>O P

u

>O

T

q
E, D and H are LTI

<4—

_,E_

What can we do with the following power constraint?

sup Var(v(k)) <1



Motivation for Using Early Warning Information in a Feedback Loop

Forward Loop:

Physical delay ~

dr d d
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Motivation for Using Early Warning Information in a Feedback Loop

Forward Loop:

Physical delay ~

W dr d d
— M > —m —VO—’
g
AD HOC choice: 1 Send the innovations

E=M" through the channel



Motivation for Using Early Warning Information in a Feedback Loop

de

Forward Loop:

Physical delay

>

AD HOC choice:
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1+ Var(q)

Send the innovations
through the channel

M Optimal estimator



Motivation for Using Early Warning Information in a Feedback Loop

Forward Loop:

Physical delay ~

W dpP d d
—» M > _-m —VO—’

N E pen Tq
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Motivation for Using Early Warning Information in a Feedback Loop

W dr

Forward Loop:

Physical delay ~
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d
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Voila!



Motivation for Using Early Warning Information in a Feedback Loop

W dr

Forward Loop:

Physical delay ~
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d
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Motivation for Using Early Warning Information in a Feedback Loop

Forward Loop (General Case):

Physical delay ~
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Motivation for Using Early Warning Information in a Feedback Loop

de

Forward Loop (General Case):

Physical delay ~

>

d

Z

—-m —»Q—»

_,E_

>O

T

q

hnkn@)-c

=)

27T 4

JT

flog

F-\w

Fd(w)

dw = -C



Motivation for Using Early Warning Information in a Feedback Loop

Forward Loop (General Case):

Physical delay ~

" dr d d
— M >, —>O—>
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Motivation for Using Early Warning Information in a Feedback Loop

W dr
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Motivation for Using Early Warning Information in a Feedback Loop

Complete Scheme with Linear Controller

Xy
W dp Physical delay d a e l y
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General Performance Bound
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Physical delay
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Complete Scheme (General Case)
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Martins, Dahleh and Doyle
CDC 2005

h(e)-h,(d)=1 (x(0)e)-7 (r.d)



General Performance Bound

Complete Scheme (General Case)

1‘0
Physical delay
dr d e y
M o[ >0 P -
fu
I
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Martins, Dahleh and Doyle
CDC 2005
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unstable poles



General Performance Bound

Complete Scheme (General Case)

1‘0
Physical delay
dr d e y
M o[ >0 P -
fu
I

— RPS —*| K

Martins, Dahleh and Doyle
CDC 2005

}(e)— h,d)=1,(x(0)e)-1 (r,d) «—=<C

i ilog(S e.d (w ))2

1 ((U) |
S? ()= =21 V _
e,d( ) Fd(a)) Y :I;log(Sd,e(a)) wzunsm ;e log‘polel.‘ C

poles

log‘ polel.‘

unstable poles



Motivation for Using Early Warning Information in a Feedback Loop

Physical delay P
d e 'ﬂ Y
—_— >{_ —
—m ‘i u

z

-RPS — K

Remote Preview System

Bode
New Bound Lf' log Sezd(a))z’a) =2 ; log‘polel.
A 2w J-7 ’ unstable

poles
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Conclusions

 Using Information Theory, we have derived new bounds in terms of differential
entropy, which can be interpreted using standard performance measures.

« Since all quantities are in the units of information, we can characterize fundamental
limits arising from capacity constraints.

* New challenging Problems (future directions):

» How tight are the bounds in general? And what is the role of the delay.

» These important problems require the interplay between dynamical
systems and real-time communication research.

 Potential areas of application:

* Design of efficient early-warning systems.
* Networked Control and overhead analysis in IT-MANET.

*Analysis of hybrid systems. Example: biological systems.



