

Agenda:

1:00	Overview of the MuSyC Challenge Problem (Necmiye)
1:15	Review of Berkeley modeling and design-space exploration work
	(Pierluigi)
1:40	Review of Caltech correct-by-construction control synthesis work
	(Mumu)
2:00	Q&A
2:30	Next steps
2:45	Adjourn

iCyPhy EPS Design Driver Telecon 4 February, 2013

Aircraft Electric Power System Challenge Problem Overview

Necmiye Ozay, Caltech CDS

Joint work: John Finn, Quentin Maillet, Mostafiz Mozumdar, Richard Murray, Pierluigi Nuzzo, Robert Rogersten, Ufuk Topcu, Alberto S-Vincentelli, Mumu Xu (Caltech, Berkeley)

Thanks to: Rich Poisson of UTAS for feedback and discussions

iCyPhy EPS Design Driver Telecon 4 February, 2013

Motivation

- Modern aircraft increasingly relies on electric power (traditionally, it was hydraulic, pneumatic, etc.)
- Complexity and safety-criticality of aircraft electric power systems (EPS) increased.

EPS for Boeing 767

Figure courtesy of Rich Poisson, Hamilton-Sundstrand. Adapted from Honeywell Patent US 7,439,634 B2

Motivation

- Aircraft EPS: a complex cyberphysical system
 - Large number of **heterogeneous** interacting components
 - Different failure modes
 - Sensing (for state estimation/ fault detection) and embedded reactive controllers (for accommodating faults)
- Want to design the topology and sensing-control protocols for it with safety, reliability and performance guarantees!

Figure courtesy of Rich Poisson, Hamilton-Sundstrand. Adapted from Honeywell Patent US 7,439,634 B2

System Components

Single line diagram (SLD) or topology includes:

- Generators
- APUs
- External Power
- Batteries
- Loads
- Buses
 - Essential
 - Non-essential
- Contactors
- Transformers
- Rectifier Units
- Motor Drives

Figure courtesy of Rich Poisson, Hamilton-Sundstrand. Adapted from Honeywell Patent US 7,439,634 B2

Overall Design Flow

- Given text based specifications:
- Formalize requirements and associate them with system entities (e.g. components)
- Find a ``feasible" topology (design-space exploration, topology synthesis)
- Given the topology and specifications, synthesize control protocol with correctness guarantees
- Export the controller to high fidelity models for simulation and further tests
- Implement on hardware

Simplified Challenge Problem

REQUIREMENTS:

- 1. No AC bus shall be simultaneously powered by more than one AC source.
- 2. The aircraft electric power system shall provide power with the following characteristics: 115 +/- 5 V (amplitude) and 400 Hz (frequency) for AC loads and 28 +/-2V for DC loads.
- 3. Buses shall be powered according to the priority tables.
- 4. AC buses shall not be unpowered for more than 50ms.
- 5. The overall system failure probability must be less than 10⁻⁹ per flight hour.
- 6. Never lose more than one bus for any single failure.
- 7. Total load must be within the capacity of the generator

Component models/specifications:

- 1. Failure probabilities for contactors, generators, etc. (not much on failure modes)
- 2. Contactor closure times are between 15-25 ms and opening times are between 10-20 ms.

System Components

Simulink model vs. full SLD:

- Generators
- APUs
- External Power
- Batteries
- Loads
- Buses
 - Essential
 - Non-essential
- Contactors
- Transformers
- Rectifier Units
- Motor Drives

Goals (partly) achieved so far

- Demonstrated:
 - requirement capture (SySML, contracts, LTL)
 - design space exploration (topology synthesis based on reliability requirements)
 - correct-by-construction control synthesis (formalize the EPS control problem as a reactive synthesis problem and synthesize control logic),
 - usability (domain specific language for EPS control synthesis)
 - integration with simulation tools (import logic controller to simulink),
 - CPS implementation (hardware test-bed)

Different Levels of Abstraction (Model Views)

Actual System

Increase in complexity of models, verification and synthesis methods!

Different Levels of Abstraction (Model Views)

