
Packet-based Estimation in Lossy
Networks

Bruno Sinopoli
Dept of Electrical Engineering

Stanford University
University of California at Berkeley



Caltech, April 24, 2006  2

Admin stuff

• Contact info:
– Email: sinopoli@eecs.berkeley.edu
– Phone: 510 367-1848

• Project Ideas, questions, research, coffee 
• Plan:

– Packet-based estimation: 1-1.5 lectures
– Packet-based control: 1.5-2 lectures

• Resources (to be posted on the wiki):
– Kalman Filtering with Intermitent Observations

• IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER 2004

– Chapter 3,4 of my dissertation.
• Additional readings to be posted.
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Vast Networks of Tiny Devices

• Past 25 years of internet technology built up around powerful 
dedicated devices that are carefully configured and very stable

– local high-power wireless subnets at the edges
– 1-1 communication between named computers

• Here, ...
• every little node is potentially a router
• work together in application specific ways
• connectivity is highly variable
• must self-organize to manage topology, routing, etc
• and for power savings, radios may be off 99% of the time
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Mote Evolution
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Sensor net increases visibilityControl and communication 
over Sensor Networks
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NEST final demo: 557 nodes network deployed
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Multi-person tracking demo GUI
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Multiple Person tracking

Multi-hop Communication

Sensing
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Pursuit evasion games

Control input Control input

Multi-hop Communication
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Experimental results: 
Pursuit evasion games
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Classical control theory vs networked 
embedded control systems

• Availability of data when 
needed

• Instantaneous 
communication

• Fixed delays
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Issues: closing the loop around 
Wireless Sensor Networks

• Issues w/ Sensor Networks and Data Networks ?
– Random time delay
– Random arrival sequence
– Packet loss
– Limited Bandwidth
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• MIMO Discrete time LTI system

• and        are Gaussian random variables with 
zero mean and covariance matrices Q and R
positive definite.

• where                 is the state vector, 
• is the output vector,

Estimation: Problem formulation
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• Background:
– A recursive linear minimum variance estimator.
– Assuming linear system and Gaussian noise, Kalman 

filter is the optimal estimator.
– It gives an estimate of the state      with bounded 

covariance error, which converges to a steady state 
value

– Under the hypothesis of stabilizability of the pair (A,Q) 
and detectability of the pair (A, C), the estimation error 
covariance of the Kalman filter converges to a unique 
value from any initial condition

Optimal State Estimator: Kalman Filter
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• Goal: given observations      find the best 
estimate (minimum variance) for

• But may not arrive at each time step 
when traveling over a sensor network

Intermittent observations

Problem formulation
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Two configurations

Pictures courtesy of Joao Hespanha
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Optimal estimation
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What we know…
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Measurement noise modeling

• The arrival of the observation at time t is 
modeled as a binary random variable , with 
probability distribution                                   
and with       independent of    if t = s.

• The output noise      is defined in the following 
way:                                                 

for some 
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Some definition:
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• Taking the limit as

• Note:
– and                     are random variables, since they 

depend on  
– We need to give a statistical description of 

Optimal Filter Equations

Kt+1
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• Let’s try to solve the difference equation for 

First Approach

We don’t get a trivial recursion
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• Let’s try to find deterministic difference equations to 
bound E[Pt|t-1]

Approach to the solution

*

Lower bound Upper bound

Using Jensen’s inequality and monotonicity arguments:
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Lower Bound

• The solution to the difference equation:

is a lower bound for E[Pt|t].
• It diverges for:
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Upper Bound

• Modified Algebraic Riccati Equation (MARE):

• Converges for γ=1 and diverges for  γ=γc ∃
γmax, such that  γ > γmax MARE converges 
(continuity argument)

• Questions:
– How to find min γmax ? feasibility LMI with 

bijection on γ
– How to find  V=gγ(V)   when it exists ? just iterate 

Vt+1=gγ(Vt),  V0 ≥ 0
– γmax=γc ? only if C is invertible
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Lower & Upper Bound (Scalar Case)
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General case
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Theorem
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– Optimal dynamic filter among all possible filters  

– We can prove the existence of a unique critical 
value     such that E[Pt] converges for all                        
and diverges otherwise

– Analytical solution for lower and numerical solution 
for upper bound for the critical probability

– Numerical solution for lower and upper bounds for 
the estimation error covariance E[Pt|t-1]

Contribution
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Relation to Jump Linear Systems

• Nilsson et al. have solved the same problem using a 
jump linear system with two states, open loop  filter 
and a closed loop one with constant gain

• They derive exact value of       for the steady state 
Kalman filter, which is suboptimal
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Performance comparison

Steady State filter shows lower performance as λ 0
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Design Guidelines

• Estimation problem:
– Characterize the reliability of your channel

• Find your

– Model the dynamical phenomenon you want to observe 
(linearize if necessary)

– Observe the eigenvalues of the system
• If             your estimate will have bounded covariance on average
• Else 

– slow down dynamics (change eigenvalues) if you have control over 
them 

– or increase the reliability of the channel


