
Beyond Satisfiability: Model Counting,

Quantification, and Randomization

Carla P. Gomes

Cornell University

Connections II

Caltech

2006

Satisfiability and Beyond

•SAT

•MAXSAT, SMT

•#SAT

•QBF

From 100 variables, 200 constraints (early 90’s)
to 1,000,000 vars. and 5,000,000 clauses in 15 years.

Applications:

Hardware and Software Verification, Planning,
Scheduling, Optimal Control, Protocol Design,
Routing, Multi-agent systems, E-Commerce (E-auctions

and electronic trading agents), etc.

Motivation:

Significant progress in SAT

Motivation:

Defying NP-Completeness

While real-world instances with over
1,000,000 variables are often solved in a few
minutes, random SAT instances with only a

few hundred variables often cannot be
solved!

Current state of the art complete or exact solvers (SAT/CSP/MIP)
can handle very large problem instances of real-world
combinatorial:

!We are dealing with formidable search spaces of exponential
size --- to prove unsatisifability or optimality we have to
implicitly search the entire search,
!the problems we are able to solve are much larger than one
would predict given that such problems are in general NP
complete or harder often

Worst

Case

Complexity

Gap Between

Theory and Practice

Random

Instances

Short Proofs

(in practice)

Exponential

Proofs

(worst case)

Worst

Case

Complexity

Understanding the Gap Between

Theory and Practice

Principled

Experimentation

Formal

Models

Random

Instances

Real-World

Problems

Outline

• SAT

– Random Problems

– Structured Problems

– Connections between Heavy-tailed Distributions,
Backdoors, and Restart Strategies in Complete Search
Methods for Combinatorial Problems:

• #SAT

– Streamlining Constraint Reasoning, Randomization, and
Model Counting;

• QBF - Quantification
• Conclusions

SAT

Propositional Satisfiability problem: (SAT)

Satifiability (SAT): Given a formula in propositional calculus, does it

have a model, i.e., is there an assignment to its variables making it

true?

(a ! ¬b ! ¬ c) AND (b ! ¬ c) AND (a ! c)

possible assignments

SAT: prototypical hard combinatorial search and reasoning

problem. Problem is NP-Complete. (Cook 1971)

SAT

Random Instances

Random 3-SAT as of 2005

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

Phase

transition

Mitchell, Selman, and Levesque ’92

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

4.596

4.506

4.601

4.643

Exact Location of Threshold

• Surprisingly challenging problem ...
• Current rigorously proved results:

• 3SAT threshold lies between 3.42 and 4.506.
– Motwani et al. 1994; Broder et al. 1992;

– Frieze and Suen 1996; Dubois 1990, 1997;

– Kirousis et al. 1995; Friedgut 1997;

– Archlioptas et al. 1999;

– Beame, Karp, Pitassi, and Saks 1998;

– Impagliazzo and Paturi 1999; Bollobas,

– Borgs, Chayes, Han Kim, and

– Wilson1999; Achlioptas, Beame and

– Molloy 2001; Frieze 2001; Zecchina et al. 2002;

– Kirousis et al. 2004; Gomes and Selman, Nature ’05;

– Achlioptas et al. Nature ’05; and ongoing…

Empirical: 4.25 --- Mitchell, Selman, and Levesque ’92, Crawford ’93.

Tremendous interaction with other communities

 OR, Physics, Mathematics

SAT

Structured Problems

Surprising “power” of SAT for

solving certain real world

combinatorial problems

(clearly outperforming Integer Programming).

From academically interesting to

practically relevant.

We now have regular SAT solver competitions.
Germany ’89, Dimacs ’93, China ’96, SAT-02, SAT-03, …, SAT-06

Sat 06 – Seattle Aug. 12-15, 2006

SAT Competitions:

Classical SAT solvers (CNF)

Pseudo Boolean Solvers

QBF

MAXSAT

SMT – SAT Mod Theory

SAT Competition 2006:

Industrial Instances

SAT Competition 2006:

Industrial Track

SAT Competition 2006:

Benchmark Instances

Classical SAT Solvers

Instances up to 1,000,000 variables and 15,000,000 clauses

– at least one solver could prove SAT/UNSAT

Timelimit per instance: 15 minutes

Progress SAT Solvers

Instance Posit' 94

ssa2670-136 40,66s

bf1355-638 1805,21s

pret150_25 >3000s

dubois100 >3000s

aim200-2_0-no-1 >3000s

2dlx_..._bug005 >3000s

c6288 >3000s

Grasp' 96

1,2s

0,11s

0,21s

11,85s

0,01s

>3000s

>3000s

Sato' 98

0,95s

0,04s

0,09s

0,08s

0s

>3000s

>3000s

Chaff' 01

0,02s

0,01s

0,01s

0,01s

0s

2,9s

>3000s

Source: Marques Silva 2002

An abstraction of

a structured combinatorial problems:

 Encodings and hardness profiles

Better

characterization

beyond worst case?

35% 42% 50%

Time: 150 1820 165

 Latin Square

(Order 4)

NP-Complete

Latin Square Completion

Critically

constrained

area

42% 50%20%

Complexity of Latin Square Completion

EASY AREA EASY AREA

P
er

ce
n
ta

g
e

o
f

u
n
so

lv
ab

le
 i

n
st

an
ce

s

Gomes and Selman 97

Routing in

Fiber Optic Networks

•
•1

•2

•3

•4

•5

•6

• 1 2 3 4 5

6

•R2

X

•R4

•R1

•R3

•R5

X•R1•R5•R4•R3

•R2•R4•R1•R3•R5

•R1X•R3•R5•R2

•R5•R3X•R2•R4
•R4•R5•R2X•R1

•R3•R2•R4•R1X

teams

te
a

m
s

Scheduling and timetabling

A D E BB C

C B A E D

D C BB A E

E A C D B

B E D C A

Design of Scientific Experiments

Many more applications…

CONFLICT FREE

LATIN ROUTER

In
p

u
t

p
o

rt
s

Output ports

3

1
2

4

Input Port Output Port

1
2

4
3

Sudoku

Underlying Latin Square structure

characterizes many real world applications

Encodings

• Constraint Satisfaction

• Integer Programming

• SAT

1. All the encodings exhibit

similar qualitative behavior wrt

to hardness profile

2.Scaling varies with encoding;

Integer Programming

 (Assignment Formulation)

–
Row/color line

Column/color line

Row/column line

Max number

of colored cells

Scaling:

up to order 20

Variables

New Phase Transition Phenomenon:

Integrality of LP

Note: standard phase

transition curves are w.r.t

existence of solution)

Sudden phase Transition in

solution integrality of LP relaxation

and it coincides with the hardest area

holes/n^1.55

N
o

 o
f

b
a
c

k
tr

a
c

k
s

M
a
x
 v

a
lu

e
 o

f
L

P
 R

e
la

x
a

ti
o

n

Gomes and Leahu 04

Integer Programming:

Packing Formulation

–
one pattern per color

at most one pattern

 covering each cell

Max number of

colored cells

(1-1/e) Approximation

Algorithm

Gomes and Shmoys 03

Constraint Satisfaction Problem (CSP)

• Variables

–

• Constraints -

row

column

Scaling:

up to order 33

• Hybrid CSP + LP

– CSP propagation

– (1-1/e) - Approximation Algorithm (based on

the packing formulation)

Scaling:

up to order 36

Gomes and Shmoys 04

Satisfiability

Minimal Encoding

• Variables:

Each variables represents a color assigned to a cell.

• Clauses:
• Some color must be assigned to each cell (clause of length n);

• No color is repeated in the same row (sets of negative binary clauses);

• No color is repeated in the same column (sets of negative binary clauses);

Scaling:

up to order 20

Satisfiability:

Extended Encoding (redundant clauses)

•Variables: Same as minimal encoding.

•Clauses: Same as the minimal encoding plus:

– Each color must appear at least once in each row;

– Each color must appear at least once in each column;

– No two colors are assigned to the same cell;

The best performing encoding

Scaling:

up to order 40

Encoding is critical when dealing with

combinatorial problems:

From order 20 (400) variables to order 40
(1600) variables

The most compact representation is not
necessarily the best performing

Connections between Heavy-tailed Distributions,

 Backdoors, and Restart Strategies in

 Complete Search Methods for

Combinatorial Problems

Phenomena Defying

 “Standard” Statistical Distributions

Tsunami 2004

Blackout of

August 15th 2003

> 50 Million People Affected

Financial Markets

 with huge crashes

… there are

a few billionaires

All these phenomena are

characterized by distributions

that have very “heavy” tails

The size of the search tree varies dramatically ,

depending on the order in which we pick the variables to branch on

(A OR NOT B OR NOT C) AND (B OR NOT C) AND (A OR C)

Heavy-Tailed Phenomena

in Combinatorial Search

Backtrack Search methods also

exhibit Heavy-tailed Phenomena

Backtrack Search

Main Underlying Search Mechanisms for Complete Search Methods:
Mathematical Programming (MP)
Constraint Programming (CP)
Satisfiability

Branch & Bound;
Branch & Cut;
Branch & Price;
Davis-Putnam-Logemann-Lovelan Proc.(DPLL)

What if the we introduce an element of randomness

into a complete backtrack search method without

losing completeness?

Randomized Backtrack Search

(*) no solution found - reached cutoff: 2000

Time: (*)3011 (*

)

7

Several runs of the a complete

randomized backtrack search

procedure (tie breaking only) on

the same instance

Median = 1!

sample

mean

3500!

Erratic Behavior of Sample Mean

500

2000

number of runs

Heavy-tailed distributions vs.

 Standard Distributions

Exponential decay for

standard distributions, e.g. Normal, Logonormal,

exponential:

Heavy-Tailed Distributions -

Power Law Decay

e.g. Pareto-Levy:

Normal!

Survival Function (Tail):

Heavy-Tailed vs. Non-Heavy-Tailed

Log-log plot of heavy-tailed

distribution exhibits linear

behavior.

Number backtracks (log)

(1
-F

(x
))

(l
o
g
)

U
n

so
lv

ed
 f

ra
ct

io
n

=> Infinite mean

Heavy-Tailed Behavior in Heavy-Tailed Behavior in

Latin Square Completion ProblemLatin Square Completion Problem

18%

unsolved

0.002%

unsolved

Restarts:

Exploiting Heavy-Tailed Behavior
 Heavy Tailed behavior seems to

be pervasive in combinatorial

search and has been observed in

several other domains: Graph

Coloring, Planning, Scheduling,

Verification, Circuit synthesis,

Decoding, etc.

70%

unsolved

1
-F

(x
)

U
n

so
lv

ed
 f

ra
ct

io
n

Number backtracks (log)

250 (62 restarts)

0.001%

unsolved

restart every 4 backtracks

(Gomes et al. 97, 98, 2000)

Restarts provably eliminate

heavy-tailed behavior

Consequence for algorithm design:

Use restarts or parallel / interleaved

runs to exploit the extreme variance

in performance ---

most state-of-art SAT solvers use

restarts.

Speedup with Restarts

(planning instance)

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
c

k
tr

a
c

k
s

)

20

2000 ~100

restarts

Cutoff (log)

N
u
m

b
er

 b
ac

k
tr

ac
k
s

(l
o
g
)

~10 restarts

100000

Carla P. Gomes

Connection 2

Caltech06

Formal Models:

On the connections between backdoors and

heavy-tailedness

Carla P. Gomes

Connection 2

Caltech06

 "Explain very long runs of complete solvers;

"But also imply the existence of a wide range

of solution times, often from very short runs to

very long

How to explain short runs?

Heavy-tailed distributions

Carla P. Gomes

Connection 2

Caltech06

T - the number of leaf nodes visited up to and including

the successful node; b - branching factor
0)1(][!"== iippibTP

Formal Model Yielding

Heavy-Tailed Behavior

b = 2 (Gomes 00; Chen, Gomes, and Selman 01)

Trade-off: exponential decay in making wrong branching

decisions with exponential growth in cost of mistakes.

(inspired by work in information theory, Berlekamp et al.

1972)

1 “special/critical variable”

p –probability of not finding the “critical” variable

What is the semantics of these

“special/critical variable”

Expected Run Time

(infinite expected time)

Variance

(infinite variance)

Tail

(heavy-tailed)

!"#][
2
1 TEp

!">][
22

1 TVp

2][
2
2

1 <!>>" ##LCLTPp

p –probability of not finding the “special/critical variable”

Carla P. Gomes

Connection 2

Caltech06

Backdoors

Carla P. Gomes

Connection 2

Caltech06

Backdoors: intuitions

Backdoors explain how a solver can get
“clever” and solve very large instances

Informally:

A backdoor to a given problem is a subset of “critical”

variables such that, once assigned values, the remaining

instance simplifies to a tractable class (not necessarily

syntactically defined).

Formally:
 We define notion of a “sub-solver” (handles tractable substructure of

 problem instance) and Backdoors and strong backdoors

Carla P. Gomes

Connection 2

Caltech06

Note on Definition of Sub-solver

•Definition is general enough to encompass any polynomial
time propagation methods used by state of the art solvers:

–Unit propagation

–Arc consistency

–ALLDIFF

–Linear programming

–…

–Any polynomial time solver

• Definition is also general to include even polytime solvers
for which there does not exist a clean syntactical
characterization of the tractable subclass.

•Applies to CSP, SAT, MIP, etc

Carla P. Gomes

Connection 2

Caltech06

More than 1 backdoor

(Williams, Gomes, Selman 03)

Carla P. Gomes

Connection 2

Caltech06

Backdoors provide detailed formal model

for heavy-tailed search behavior.

Can formally relate size of backdoor and strength of heuristics (captured

by its failure probability to identify backdoor variables) to occurrence

of heavy tails in backtrack search.

Carla P. Gomes

Connection 2

Caltech06

Backdoors in real-world

problems instances

Carla P. Gomes

Connection 2

Caltech06

Gap between Theory and Practice:

Tractable Problem

Sub-structure

Backdoors !

Hidden tractable substructure in real-world

problems

Carla P. Gomes

Connection 2

Caltech06

Backdoors can be surprisingly small:

Backdoors explain how a solver can get “lucky” on certain runs,

when the backdoors are identified early on in the search.

Most recent: Other combinatorial domains. E.g. graphplan planning,

near constant size backdoors (2 or 3 variables) and log(n) size

in certain domains. (Hoffmann, Gomes, Selman ’05)

 Backdoors capture critical problem resources (bottlenecks).

Carla P. Gomes

Connection 2

Caltech06

Backdoors --- “seeing is believing”

Logistics_b.cnf planning formula.

843 vars, 7,301 clauses, approx min backdoor 16

Logistics.b.cnf after setting 5 backdoor vars

(result after propagation);

After setting just 12 (out of 800+) backdoor vars – problem almost solved.

After setting 38 (out of 1600+)

backdoor vars:

Some other intermediate stages:

Tractable structure

hidden in the network.

Related to small-world

networks etc.

MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3.

392 vars, 2,578 clauses.

Map Top: running without backdoor

Map Top: running with “a” backdoor

(size 9 – not minimum)

Map Top: running with backdoor

(minimum – size 3)

Initial Graph

After setting two backdoors After setting three backdoors

After setting one backdoor

Carla P. Gomes

Connection 2

Caltech06

How to Exploit Backdoors?

We need to take into account

 the cost of finding the backdoor!

We considered several complete algorithms:

• Generalized Iterative Deepening

• Randomized Generalized Iterative Deepening

• Complete randomized backtrack search with
variable and value selection heuristics

 (as in current solvers)

Formal results

(Williams, Gomes, and Selman ’04)
Current

solvers

Size

backdoor

n = num. vars.

k is a constant

Backtrack Search with randomized heuristic

for Var/Value selection

Backdoor set detection is fixed-parameter tractable for HORN and 2CNF

(Nishimura, et. al 04)

Carla P. Gomes

Connection 2

Caltech06

Streamlining Constraint Reasoning

Carla P. Gomes

Connection 2

Caltech06

 Design of Scientific Experiments

(4 Treatments)

Standard Approach:

Analysis of Variance Based on Latin Squares

Carla P. Gomes

Connection 2

Caltech06

 Design of Scientific Experiments

(4 Treatments: A,B,C,D)

For some experiments: need so called

Spatially Balanced Latin Squares

Carla P. Gomes

Connection 2

Caltech06

1

4

3

2

3

1
14

2

1

2

4

4

1
14

3

1

2

5

4

1
14

4

3

1

3

1

2
14

5

2

1

1

2

3
14Total Row Distance (pair)

2.33 2.33 2.33 2.33 2.33Average Row Distance (pair)

Spatially Balanced Latin Squares

(SBLS)

Carla P. Gomes

Connection 2

Caltech06

Spatially Balanced Latin Squares

(SBLS)

Perfectly balanced

2.33

Below average Above average

A totally spatially balanced Latin square (TSBLS):

 the total row distance is

 the same for all pairs of colors or symbols

Carla P. Gomes

Connection 2

Caltech06

Standard Approaches to SBLS

• Hybrid IP/CSP based

– Assignment formulation

– Packing formulation

– Different CSP models

• CSP based approach

– State of the art model for Latin Squares

+ symmetry breaking by initializing first row and column
(SBDD doesn’t help; this is not a completion problem)

• Local search based approach
(Gomes and Sellmann CPAIOR 04)

These approaches do not scale up

 max order 6.

Carla P. Gomes

Connection 2

Caltech06

What to do when:

Local search doesn’t help;

 Backtrack search with all sophisticated

enhancements performs very poorly;

…

and you believe there are

 lots of solutions that we cannot find?

Carla P. Gomes

Connection 2

Caltech06

Streamlined

 Diagonally Symmetric SBLS:

Order 6

Carla P. Gomes

Connection 2

Caltech06

Streamlining Reasoning:

Key ideas

Note:

Hard practical limit on the effectiveness of constraint

propagation methods,

if one insists on maintaining the full solution set;

Often there is no compact representation for all the solutions

(e.g., Latin Squares)

Goal: Exploit the structure of solutions

 to dramatically

 boost the effectiveness

of the propagation mechanisms

Carla P. Gomes

Connection 2

Caltech06

Streamlining in Terms of Global Search

P1

Substantially

smaller than

its complement

P2

Streamlining:

strong branching mechanisms

 at high levels of the search tree.

Carla P. Gomes

Connection 2

Caltech06

Streamlined

 Diagonally Symmetric SBLS:

Order 8

Carla P. Gomes

Connection 2

Caltech06

A SBLS of Order 35:

The Largest Ever Found

Carla P. Gomes

Connection 2

Caltech06

Cornell can now provide the templates for

experimental design to NYS Ag. Laboratories

 (Land-grant mission) #

YES

 XOR-Streamlining

Not only does it allow us to FIND solutions it also

allow us to COUNT solutions.

But this is highly domain dependent…

Can we find an domain independent way of

streamlining?

Beyond Satisfaction:

Model Counting

Counting and Sampling

The ability to count/sample solutions
effectively opens up a wide range of new

applications.

Related work: Bayardo 98, Kautz et al. ’04; Bacchus et al. ’03; Darwich ’04 & ’05; Littman ’03, Nishimura, Radge, Szeider, 06.

Note: counting solutions and sampling solutions are computationally

near equivalent.

SAT testing counting/sampling

logic inference probabilistic reasoning

NP / co-NP-complete#P-complete

Counting Solutions is much harder than finding a single model

vs.

#SAT: Counting solutions

• # SAT is very hard in the worst case

• NP-Hard to approximate within

• Hardness results apply even for tractable

cases of SAT (e.g., Horn, and 2CNF)

02
1

>
!

"
"

n

Model Counting:

Two Paradigms

1. Approximate counters. E.g. Markov Chain Monte Carlo

methods. Based on setting up a Markov chain with a predefined

stationary distribution. E.g. simulated annealing. Markov chain

takes exponential time to converge to its stationary distribution.

NO guarantees on quality of approximation.

2. Exact counters. Modifications of DPLL (backtrack style) SAT

solvers. Need to traverse full exponential search space. Very

Expensive.

Model Counting:

A New Approach

Can we count solutions in a “totally” different way

using a state-of-the-art SAT solver AS-IS?

 SAT solver says just “satisfiable” or “unsatisfiable”.

Hmm???

YES!!!

Recent work with Ashish Sabharwal and Bart Selman 06

Model Counting:

Intuition of Our Approach

How many people

are present in this room?

Everyone starts with a hand up

– Everyone tosses a coin

– If heads, keep hand up,

if tails, bring hand down

– Repeat till only one hand is

up

Return 2#(rounds)

Does this work?

• On average, YES.

Model Counting:

Intuition of Our Approach

Making the Intuitive Idea Concrete

• How can we implement this coin flipping

strategy given that we know nothing

about the solution space structure

– Solutions are “hidden” in the formula

• How do we transform the average behavior

into a robust method with provable

correctness guarantees?

Somewhat surprisingly, all these issues can be resolved!

From Counting People to #SAT

Given a formula F over n variables,

– Auditorium : search space for F

– Seats : 2n truth assignments

– Occupied seats : satisfying assignments

Bring hands down : add a constraint eliminating
 those satisfying assignments

Model Counting:

A New Approach

Approach inspired by

• (1) “Streamlining Constraint Reasoning” Divide search space by adding
streamlining constraints.

• (2) Work of Valiant and Vazirani (1986) on “Unique SAT”

“Unique SAT” problem.

 If we have a formula with at most unique/single satisfying

assignment, is it easier than an arbitrary (satisfiable) formula?

SAT and UNIQUE SAT are essentially equivalent in terms of hardness.

 Valiant and Vazirani (1986): Mainly viewed as a negative result: “knowing more
does not help.”

XOR/Parity Constraints

Unique Sat Proof (very clever): Add random parity / XOR constraints to

formula to cut down #solns to 1 with high probability.

XOR/parity constraints

– E.g. a " b " c " d = 1

(satisfied if an odd number of variables set to True)

– Translates into a small set of CNF clauses

– probabilistically streamline the search space (XOR-Streamlining)

! an XOR constraint cuts down the number of satisfying assignments
in half (in expectation), acting as a “hash function”, splitting the set of
truth assignments in an “accept” and “reject” bucket.

Model Bound (MBound):

Counting with XOR Streamlining Constraints

Gomes, Sabharval, Selman AAAI06

Thm: If F is still satisfiable after s random XOR constraints,
 then F has # 2s-$ solutions with prob. # (1-1/2$)

Basically:

Add s XOR parity constraints to the

original formula F

Key Features of MBound and

Hybrid Bound

• Can use any off-the-shelf state-of-the-art SAT solver –only one
solution needs to be found.

• Random XOR constraints independent of both the problem domain
and the SAT solver used

• Adding XORs further constrain the problem
– Can model count formulas that couldn’t even be solved!

– An effective way of “streamlining” [Gomes-Sellmann ‘04]
% XOR streamlining

• Provable upper and lower bounds on the model counts, with
confidence that can be boosted arbitrarily by repeated runs.

• Further boost in performance ! Hybrid Model Count = xor-
streamlining + exact counter

Experimental results

1) Instances: Very hard combinatorial problems.

2) E.g. Schur_5_140 formula cannot be solved at all without

XOR streamlining.

3) Confidence in bounds: >= 99.9% (can be arbitrarily

boosted). Approxcount no guarantees.

4) Further results in Gomes, Sabharwal, abd Selman 06.

Our approach

Backdoors for #SAT

• #SAT is tractable for hitting formulas where any

two clauses clash (i.e., have a complementary pair

of literals)

• #SAT is tractable for clustering formulas (i.e.,

variable disjoint sets of hitting formulas)

• Fixed-parameter tractable algorithm for #SAT

based on clustering formula (clustering width)

backdoor set

Nishimura, Radge, Szeider, 2006

Quantification

Quantified Reasoning

Quantified Boolean Formulas (QBF) extend Boolean logic by

allowing quantification over variables (exists and forall)

•QBF is satisfiable iff there exists a way of setting the existential vars
such that for every possible assigment to the universal vars the
clauses are satisfied.

QBF encodes adversarial tasks: literally a “game played on the
clauses”:

–Existential player tries hard to satisfy all clauses in the matrix.

–Universal player tries hard to “spoil” it for the existential
player: i.e., break (“unsatisfy”) one or more clauses.

)]()[(00110 hhhhj bbbbbbbb ¬!¬"¬!#$$# ++ KKK

MatrixQuantifiers prefix

• Range of new applications: Multi-agent reasoning,

unbounded planning, unbounded model-checking

(verification), and certain forms probabilistic reasoning

and contingency planning.

• Formally: Problem is PSPACE- complete.

Can we transfer successful SAT techniques to QBF?

Related work: Walsh ’03; Gent, Nightingale, and Stergiou ’05; Pan & Vardi 04;

Giunchiglia et al. 04; Malik 04; and Williams ’05.

Challenges to QBF

QBF is much more sensitive to problem encoding.

SAT/QBF encodings require auxiliary variables.
These variables significantly increase the raw combinatorial
search space.

SAT: Propagation forces search to stay within combinatorial space
of original task.

QBF – more problematic! Universal player pushes to violate
domain constraints (trying to violate one or more clauses). Search
leads quickly outside of search space of original problems.

!encodings have to be carefully engineered.

Modern SAT solvers scale very well
(1M + variables),

QBF solvers don’t! (~10 K vars)

Original

Search Space

2N

Search Space

SAT Encoding

2N+M

Space Searched

by SAT Solvers

2N/C ; Nlog(N); Poly(N)

Original

2N

Search Space for SAT Approaches

Original

Search Space

2N

Search Space

QBF Encoding

2N+M’

Can we reduce the search space

With clever encodings , streamlining, etc?

Search Space of QBF

Search Space

Standard QBF Encoding

2N+M’’

Original

2N

Boosting QBF Reasoning

Using A Dual CNF-DNF Representation

• Pure CNF QBF encodings of games are fairly complex

[e.g. Madhusudan-Nam-Alur 2003; Ansotegui-Gomes-Selman AAAI’05]

– Hinder propagation across quantifiers

– Lead to “illegal search space” issues

• A good dual CNF-DNF encoding can alleviate many problems

– Symmetric structure and succinctness

– Orders of magnitude improvement in runtime

QBF Modeling: Exploiting Player Symmetry for
Simplicity and Efficiency [Sabharwal-Ansotegui-Gomes-Hart-

Selman SAT’06]

Experimental Results

0.1049713732042Fconf-r6

0.083467684985Fconf-r5

0.046.41242685Fconf-r4

0.034.1629.355Fconf-r3

0.022.5335.8625Fconf-r2

0.011.3154.012Fconf-r1

Duaffle

(without learning!)

Cond-

Quaffle

Quaffl

e
sKizzo

Sempro

p

T/

F
name

Dual

Encoding
Pure CNF Encoding

xChess

instance

31.21088--1509--Tconf08

0.03.57842261Fconf07

30.6633--memou

t

--Fconf06

0.11965104483290Fconf05

3.51002352----Tconf04

1.483--1532--Tconf03

0.01.06.03093Fconf02

6.4539--4921225Fconf01

5-15

quantifier

levels

(reachability)

7-9

quantifier

levels

Experimental Results, contd.

0.1111424271018Fconf5

32.0274------Fconf4

2.23272128----Fconf3b

5.2653--
memou

t
--Tconf3a

56.9275------Fconf2b

65.9438------Tconf2a

2.214814731930706Fconf1d

2.1156--804659Tconf1c

1.31242939176682Fconf1b

1.8161--83627Tconf1a

Duaffle

(without learning!)

Cond-

Quaffle

Quaffl

e
sKizzo

Sempro

p

T/

F
name

Dual

Encoding
Pure CNF Encoding

xChess

instance

7-9

quantifier

levels

Duaffle (even without learning) on the dual encoding dramatically outperforms

 all leading CNF-based QBF solvers on these challenging instances

Summary

SAT progress !
 Path from 100 var instances (early 90’s) to 1,000,000+ var instances

(current).

Still moving forward …

Capturing and exploiting structure is key when dealing with
Large Real-world instances:

connections between heavy-tails, backdoor sets, randomization, and restarts.

streamlining and xor streamlining

Beyond satisfaction / New applications:

 Model counting and Quantification.

The End

www.cs.cornell.edu/gomes

