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ẋi = Axi + Bui

yi = Cxi
zi =

1
|Ni|

∑

j∈Ni

(yi − yj)ξ̇i = F ξi + Gzi

ui = Hξi + Kzi

ẋi = Axi + Bui

zi = λjCxi

ξ̇i = F ξi + Gzi

ui = Hξi + Kzi

λi

λi

G




1 − 1
2 0 1 0 0

0 1 0 0 −1 0
0 0 1 − 1

3 − 1
3 − 1

3
0 0 0 1 −1 0
− 1

3 0 0 − 1
3 1 − 1

3
0 0 0 0 −1 1




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Notation

• Â = IN ⊗ A: block diagonal matrix with A as elements

• A(n) = A ⊗ In: replace elemnts of A with aijIn

• For X ∈ Rr×s and Y ∈ RN×N , X̂Y(s) = Ŷ X(r)

Let T be a Schur transformation for L, so that U = T−1LT is upper triangular. Transform
the (stacked) process states as x̃ = T(n)x and the (stacked) controller states as ξ̃ = T(n)ξ.
The resulting dynamics become

d

dt



x̃

ξ̃



 =



Â + B̂K̂ĈU(n) B̂Ĥ

ĜĈU(n) F







x̃

ξ̃



 .

This system is upper triangular, and so stability is determined by the elements on the
(block) diagonal:

d

dt



x̃j

ξ̃j



 =



A + BKCλj BH

GCλj F







x̃

ξ̃



 .

This is equivalent to coupling the process and controller with a gain λi.

ξ̇i = F ξi + Gzi

ui = Hξi + Kzi

ẋi = Axi + Bui

z = LĈx
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Abstract

In this lecture, we take a look at the problem of distributed control.
We will begin by seeing why the problem is hard. Then we will look at
one obvious approach towards solving the problem. Other approaches
to the problem will also be mentioned.

Contents

1 Introduction 1

2 Information Pattern 3

3 Sub-optimal Controller Synthesis 5
3.1 Stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Identifying Solvable Information Patterns 10

1 Introduction

Distributed Control is a very widely used and ill-defined term. We will
consider one possible way of defining such systems.

Conventional controller design problem assumes that all the controllers
present in the system have access to the same information. Thus, typically,
the controller design problem if to design a controller K for a plant P such
that some performance specification min ‖ f(P, K) ‖ is met1. As an exam-
ple, the classical LQG problem can be stated as follows. Given a plant P of

1There is usually also an additional specification that K should stabilize the plant.
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the form
x(k + 1) = Ax(k) + Bu(k) + w(k),

design a controller that generates control inputs u(k) as a causal function
of the measurements

y(k) = Cx(k) + v(k)

and minimizes a quadratic cost function of the form

J = E
K∑

k=0

[
x(k)T Qx(k) + u(k)T Ru(k)

]
.

The noises w(k) and v(k) are assumed white and Gaussian.
In the corresponding distributed control problem, multiple plants of the

form
xi(k + 1) = Aixi(k) +

∑

i!=j

Aijxj(k) + Biui(k) + wi(k)

are present. If the terms Aij are all zero, the plants are said to be dynamically
uncoupled. Each plant i has access to (possibly noisy) observations about
the states of a set of other agents. We refer to this set as the out-neighbors
of the agent i and denote it as Ni

2. For simplicity, throughout this lecture
we will assume that each agent can access the states of all its out-neighbors
perfectly. Denote by x(k) the vector formed by stacking the states of all the
individual agents xi(k)’s and define vectors u(k) and w(k) similarly. The
aim is to design the control laws of the individual agents to minimize (say)
a quadratic cost function of the form

J = E
K∑

k=0

[
x(k)T Qx(k) + u(k)T Ru(k)

]
,

where in general Q and R are full. The additional constraint is that each
control input ui(k) can only depend on the states of agents in the set Ni. If
we try to minimize the cost function directly, we will come up with a control
law of the form u(k) = F (k)x(k) where the matrix F (k) is full in general
and thus does not satisfy this topology constraint. Solving the problem in
the presence of this constraint is a much harder problem.

2By convention we assume that i ∈ Ni.
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Thus, in general, a distributed control problem can be stated in the
form [22]

minimize ‖ f(P, K) ‖ (1)
subject to K stabilizes P

K ∈ S,

where S is a subspace3. For a general linear time-invariant plant P and sub-
space S, there is no known tractable algorithm for computing the optimal
K. In the next section, we try to see why this problem is hard. We will
restrict ourselves to the case of linear plants and quadratic costs from now
on.

2 Information Pattern

While the problem stated in 1 is tractable (at least for the special LQ case
we are concentrating on) if the subspace constraint is not present, imposing
the constraint that K lie only in the subspace S renders the problem open
in general. One of the earliest works that pointed out that just the assump-
tions of a linear plant, quadratic cost and Gaussian noises are not sufficient
to obtain the solution was the famous counter-example provided by Witsen-
hausen [1] (see also [3]). The problem was originally posed in terms of two
stages. We can view them as two agents in our setting. Consider x(0) and
v to be two independent scalar random variables. At the first stage, the
random variable x(0) is viewed. Thus the output equation is

y(0) = x(0).

Based on this observation, a control input u(0) is calculated and applied.
The state then evolves to

x(1) = x(0) + u(0).

At the next stage, the output equation is

y(1) = x(1) + v.

A control input u(1) that depends on y(1) is then calculated and applied to
obtain

x(2) = x(1)− u(1).
3The way we have defined the problem makes it very similar to the problem of finding

a structured controller for a plant.
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The objective is to minimize the cost function given by

J = k2u(0)2 + x(2)2.

The admissible controllers are

u(0) = γ0 (y(0))
u(1) = γ1 (y(1)) ,

where γ0 and γ1 are Borel functions.
Note that if u(1) were allowed the knowledge of u(0), the problem can

be solved using LQG like methods. However, in the present case, there is
information to signal and the observation y(1) can be used to signal that
information. There is a trade-off between maximizing the information avail-
able (signaling) and minimizing the use of control at the first stage. Note
the form of the cost function. At the second stage, all we are penalizing is
x(2) which is calculated as

x(2) = x(1)− u(1).

The controller needs to estimate x(1) from y(1) as best as it can, so that it
can set u(1) close to x(1). On the other hand, at the first stage, we do not
penalize the state x(1) and hence the controller can choose u(0) arbitrarily
without worrying about x(1). Thus we are asking for x(1) to be

1. low entropy, so that it can be easily predicted.

2. high energy, so that the noise v does not affect it much.

Affine controllers would mean Gaussian random variables and for Gaussian
variables these two aims are in direct opposition. Non-linear controllers thus
can achieve better performance.

While it is known that a nonlinear controller can achieve much better
performance than any linear controller, the optimal controller of this prob-
lem is still unknown. As an instance, for k = 0.1, the best possible affine
control law gives a cost of 0.99, while non-linear controllers are possible
which drive the cost as close to zero as desired. It can also be shown that
the cost function is no longer convex in the controller variables, hence the
problem is hard to solve numerically.

This simple counterexample is important since it shows that even for lin-
ear plants, quadratic costs and Gaussian noises, linear controls may not be
optimal and the problem may be very difficult to solve. The additional piece

4



that makes the conventional control problem simple is that of the informa-
tion pattern. Informally, the information pattern is a representation of the
information set that each decision maker in the problem (e.g. the controller)
has access to at every time step when it makes the decision (e.g. calculates
the control input). As an example, in the conventional LQG control prob-
lem, the controller at time step k has access to all the measurements y(0),
y(1), · · · , y(k − 1) as well as all the previous control inputs u(0), u(1), · · · ,
u(k− 1). This is called a classical information pattern4. As Witsenhausen’s
counterexample shows, a non-classical information pattern can render a con-
trol problem intractable. Since in a distributed control problem, different
controllers have access to different information sets, the information pat-
tern is not classical and hence the problem is inherently difficult. It can
be shown [4, 5], e.g., that the problem of finding a stabilizing decentralized
static output feedback is NP-complete.

Since the general problem is difficult, there are two main approaches that
have been proposed:

1. Identifying sub-optimal solutions.

2. Identifying special conditions or information patterns under which the
problem can be solved.

We now look at these approaches in a bit more detail.

3 Sub-optimal Controller Synthesis

In this section, we will take a look at some of the approaches that have been
suggested to implement sub-optimal controllers for arbitrary interconnection
topology (and hence arbitrary sub-space constraints) on the controller.

Perhaps the approach that is most easy to understand is the one inspired
by the design of reduced-order controllers (e.g., [6]). This approach was
used to obtain numerical algorithms for solving the optimal linear control
with arbitrary number of free parameters for the infinite horizon case in,
e.g., [7, 8]. We will consider the version presented in [9].

Consider N dynamically uncoupled agents evolving as

xi(k + 1) = Aixi(k) + Biui(k),

where the control of the i-th agent can depend linearly on its own state value
and the states of a specified set of other agents. On stacking the states of

4Alternatively, the information pattern has total recall.
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all the agents, the system evolves as

x(k + 1) = Ax(k) + Bu(k)
u(k) = Fx(k),

where F is a matrix that incorporates the interconnection information. In
particular, F has a block structure, with the (i, j)-th block zero if agent
i cannot obtain the information about agent j to calculate its state value.
Thus F is constrained to lie in a particular space. Assume that the ini-
tial condition x(0) is random and Gaussian with mean zero and covariance
R(0). We wish to find the constrained control law F that minimizes the cost
function

J = E

[ ∞∑

k=0

{xT (k)Qx(k) + uT (k)Ru(k)}
]

.

Assume that a F exists in the required space, such that A+BF is stable.
Then, for that F , the cost function is given by

J = E
[
xT (0)Px(0)

]
,

where P satisfies the discrete algebraic Lyapunov equation

P = (Q + F T RF ) + (A + BF )T P (A + BF ).

Thus the cost is given by J = trace(PR(0)) with R(0) as the initial covari-
ance.

The case when noise is present can also be expressed similarly. Suppose
that the system evolves as

x(k + 1) = Ax(k) + Bu(k) + w(k)
u(k) = Fx(k),

where F is chosen to minimize the cost function

J = lim
k→∞

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
.

As an exercise, prove that the cost can now be written as J = trace(PRw)
where Rw is the covariance of noise w(k). Note that because F is stable,
the initial condition R(0) would not affect the cost function.
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3.1 Stabilizability

Two questions arise immediately:

1. Is it possible to stabilize the system using information from other
agents when the agents are individually not stable. In other words, if
an agent is unstable, can the system be stabilized by the exchange of
information between different agents?

2. Are some topologies inherently unstable in that even if the agents are
stable, the information flow will always make it impossible to stabilize
the formation?

The following result [9, 10]) answers these questions.

Proposition 1. Consider a system of interconnected dynamically uncoupled
agents as defined above.

1. The system is controllable if and only if each individual agent is con-
trollable.

2. The system is stabilizable if and only if each individual agent is stabi-
lizable.

Proof. We present the proof for the case of identical agents. The case of
non-identical agents is similar and is left as an exercise. Suppose there are
N agents each with state-space dimension m with state matrices Φ and Γ.
Thus the entire system has state-space dimension Nm and system matrices

A = I ⊗ Φ
B = I ⊗ Γ,

where I is the identity matrix of suitable dimensions and ⊗ represents the
Kronecker product. For controllability of the system, we thus want the
following matrix to have rank Nm

M1 =
[

I ⊗ Γ (I ⊗ Φ)(I ⊗ Γ) (I ⊗ Φ)2(I ⊗ Γ) · · · (I ⊗ Φ)Nm−1(I ⊗ Γ)
]
.

Using the standard property of Kronecker product

(a⊗ b)(c⊗ d) = ac⊗ bd,

we can rewrite M1 as

M1 =
[

I ⊗ Γ (I ⊗ ΦΓ) (I ⊗ Φ2Γ) · · · (I ⊗ ΦNm−1Γ)
]
.
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This matrix has rank Nm if and only if the following matrix has rank m

M2 =
[

Γ ΦΓ Φ2Γ · · · ΦNm−1Γ
]
.

Since Φ is an m×m matrix, the equivalent condition is that the matrix

M3 =
[

Γ ΦΓ Φ2Γ · · · Φm−1Γ
]

has rank m. But M3 being rank m is simply the condition for the individual
agent being controllable. Thus the system is controllable if and only if each
individual agent is controllable. This proves the first part. The proof of the
second part is similar. The subspace not spanned by the columns of M1

is stable if and only if the subspace not spanned by the columns of M3 is
stable.

3.2 Numerical Algorithms

In this section we obtain necessary conditions for the optimal solution that
we can numerically solve. We wish to find

F =
n∑

i=1

αiΦi

such that trace(PR(0)) is minimized, where

P = (Q + F T RF ) + (A + BF )T P (A + BF ). (2)

For a critical point

trace
(

∂P

∂αi
R(0)

)
= 0, ∀i = 1, 2, · · · , n.

Let us define
Σi = ΦT

i

[
RF + BT P (A + BF )

]
. (3)

Differentiating (2) with respect to αi, we obtain

∂P

∂αi
= (A + BF )T ∂P

∂αi
(A + BF ) + Σi + ΣT

i .

Thus the cost is given by

trace
(

∂P

∂αi
R(0)

)
= trace

((
(A + BF )T ∂P

∂αi
(A + BF ) + Σi + ΣT

i

)
R(0)

)
.
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Now the covariance of the state at time k evolves as

R(k + 1) = (A + BF )R(k)(A + BF )T .

Thus

trace
(

(A + BF )T ∂P

∂αi
(A + BF )R(0)

)
= trace

(
∂P

∂αi
R(1)

)
.

Using this relation k times, we obtain

trace
(

∂P

∂αi
R(0)

)
= trace

((
∂P

∂αi
R(k) + ΣiX(k) + ΣT

i X(k)
)

R(0)
)

,

where
X(k) = R(0) + R(1) + · · · + R(k).

But if (A + BF ) is stable, R(k) would be approximately be a zero matrix
for sufficiently large values of k. Thus if we denote

X = R(0) + R(1) + · · · ,

we see that X satisfies the Lyapunov equation

X = R(0) + (A + BF )X(A + BF )T , (4)

we obtain the following necessary condition for a critical point. We want

trace
(
ΣiX + ΣT

i X
)

= 0 ∀i = 1, · · · , n,

where

F =
n∑

i=1

αiΦi,

P satisfies (2), Σi is defined by (3) and X satisfies (4). This equation can
either be solved iteratively or a gradient descent method can be used to
obtain the control law.

As an exercise, show that

1. For the case when F has no restrictions on its structure, we obtain the
usual condition

BT P (A + BF ) + RF = 0.
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2. If the initial conditions of the agents are independent, then for the
completely decentralized case (when the control law of each agent can
depend only on its own state value), only the diagonal terms of cost
matrices Q and R are important. Note that this is not true is general.
Even if agent i cannot access the state of agent j, the (i, j)-th block
of matrices Q and R are still important.

The algorithm we have discussed is for the infinite horizon case. For
the finite horizon case, a similar algorithm can be applied as described, e.g.,
in [11]. However, as [12] pointed out, there are computational difficulties
arising out of solving a large number of coupled matrix equations. A sub-
optimal algorithm to get around this difficulty was proposed in [10] in which
as opposed to NT coupled matrix equations (where T is the time horizon
and N agents are present), N equations need to be solved T times.

3.3 Other Approaches

We have described one particular approach towards obtaining sub-optimal
algorithms for the distributed control problem. Many other approaches have
been proposed in the literature. We do not have time to go through them
in any detail. However we summarize a couple of approaches here.

The problem of synthesizing a constrained controller while minimizing a
H2 performance criterion was considered in [13]. The analysis problem (for a
given controller) was shown to be convex. However the it was shown that for
the synthesis problem, enforcing the topology constraint typically destroys
convexity. A method to retain convexity at the expense of sub-optimality
was presented.

The problem of synthesizing a distributed controller achieving H∞ per-
formance was considered in [14]. They used tools inspired by dissipativ-
ity theory and derive sufficient LMI conditions on which performance con-
straints can be imposed. The controller structure that they come up with
has the same interconnection topology as the plant interconnection topol-
ogy. The tools have been extended to the case of lossy communication links
in [15].

These are but two particular approaches. The problem can also be looked
at in context of Receding Horizon Control. Distributed Receding Horizon
Control will be covered in detail next week. There is also extensive work on
many other approaches including those inspired by Game Theory, potential
fields and so on.
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4 Identifying Solvable Information Patterns

As we saw, the general problem of distributed control is very difficult and
the optimal controller is not known for arbitrary information patterns. In
particular, optimal controllers are not linear or even numerically easy to
calculate in general. There have been numerous efforts to classify what in-
formation patterns lead to linear controllers being optimal and in what cases
can the optimal linear controller be cast as a convex optimization problem.
Witsenhausen [2] in a survey paper summarized several important results.
He gave sufficient conditions under which the standard LQG theory could be
applied and thus the optimal controller would be linear. Another important
early contribution was [16] which showed the optimal controller to be linear
for a class of information structures that they called partially nested. A
partially nested information structure is one in which the memory commu-
nication structure is the same as the precedence relation in the information
structure diagram. Informally, this means that a controller A has access to
all the information that another controller B has access to, if the decision
that B makes can affect the information set of A. Thus once the control laws
are fixed, any controller can deduce the action of all the controllers prece-
dent to it.The only random effects are due to the structure of the external
disturbances which are not control-law dependent.

As an example, consider a system where two agents evolve according to

x1(k + 1) = A1x1(k) + B1u1(k) + w1(k)
x2(k + 1) = A2x2(k) + A + 12x1(k) + B2u2(k) + w2(k),

where w1(k) and w2(k) are white uncorrelated zero mean Gaussian noises.
Further let the initial conditions x1(0) and x2(0) be independent. Suppose
the cost function to be minimized is

J = E

[
K∑

k=0

{xT
1 (k + 1)Q1x1(k + 1) + xT

2 (k + 1)Q2x2(k + 1) + uT
1 (k)R1u1(k) + +uT

2 (k)R2u2(k)}
]

.

The agents are being observed through measurements of the form

y1(k) = C1x1(k) + v1(k)
y2(k) = C2x2(k) + v2(k),

with the usual assumptions on the noises. Obviously if both the agents
have access to all previous control inputs ui(0), ui(1), · · · , ui(k− 1) and the
measurements yi(0), yi(1), · · · , yi(k) at any time step k, the information
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structure is classical. The problem then admits of unique optimal control
inputs ui(k). Further they are linear in the measurements and can be ob-
tained, e.g., using the LQG theory. However now consider an information
pattern in which agent 1 has access to its own previous controls u1(0), u1(1),
· · · , u1(k− 1) and its own measurements y1(0), y1(1), · · · , y1(k). The agent
2 has access to its own control inputs but measurements from both agents.
In this case, the information pattern is partially nested. Even for this in-
formation structure, the optimal control inputs are unique and linear in the
measurements. This is so because agent 1 can choose its control input with-
out worrying about agent 2’s decision. Agent 2 can reconstruct agent 1’s
control input if it knows the control law followed by agent 1 even if it does
not have access to the control input directly. Thus it can also solve for the
same control input as in the classical information pattern case.

There has been a lot of work on particular information patterns. For in-
stance the one-step delayed information sharing pattern assumes that each
controller has, at the current time, all the previously implemented con-
trol values, all the observations made anywhere in the system through, and
including the previous time, and its own observation at the current time.
Hence current observations are not shared. Recursive solutions for this prob-
lem with a quadratic cost were provided using dynamic programming in [18],
an exponential cost by [19] and with H2, H∞ and L1 costs by [21]. Some
other structures that are tractable have been identified, e.g., in [17, 20]. A
property called quadratic invariance was defined in [22] and it was shown
that it is necessary and sufficient for the constraint set to be preserved under
feedback, and that this allows optimal stabilizing decentralized controllers
to be synthesized via convex programming.
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