
Lecture 2:

Optimization-Based Control

Richard M. Murray

Caltech Control and Dynamical Systems

16 March 2009

Goals:

• Review trajectory generation and receding horizon control (online optimization)

• Review the Kalman filtering problem for state estimation and sensor fusion

• Describe some implementation tools (spread, pthreads) for optimization-based

control

Reading:

• AM08 supplement: Optimization-Based Control, Murray, 2009

Richard M. Murray, Caltech CDSEECI, Mar 09 2

Networked Control Systems

Richard M. Murray, Caltech CDSEECI, Mar 09 3

Control Architecture: Two DOF Design

• Use nonlinear trajectory generation to construct (optimal) feasible trajectories

• Use local control to handle uncertainty and small scale (fast) disturbances

• Receding horizon control: iterate trajectory generation during operation

!

Plant

P

Local

Control

noise

Trajectory

Generation
ref

output

Local designNonlinear design
• global nonlinearities
• input saturation
• state space constraints

“RHC”

LQR/PIDOptimal Control

Murray, Hauser et al
SEC chapter (IEEE, 2002)

Richard M. Murray, Caltech CDSEECI, Mar 09 4

Trajectory Generation Using Differential Flatness

• Use basis functions to parameterize output " linear problem in terms of coefficients

Complicated (algebraic) constraints

z

Richard M. Murray, Caltech CDSEECI, Mar 09 5

Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

subject to

If system is flat, once again we get an algebraic problem:

• Constraints hold at all times " potentially over-constrained optimization

• Numerically solve by discretizing time (collocation)

• Input constraints

• State constraints

Finite parameter optimization problem

"

Richard M. Murray, Caltech CDSEECI, Mar 09 6

NTG: Nonlinear Trajectory Generation

Flatness-based optimal control package

• B-spline representation of (partially) flat outputs

• Collocation based optimization approach

• Built on NPSOL optimization pkg (requires license)

• Warm start capability for receding horizon control

Solves general nonlinear optimization problem

• Assumes x and u are given in terms of (partially) flat outputs

• Constraints are enforced at a user-specified set of collocation points

• Gives approximate solution; need to use w/ feedback to ensure robustness (2 DOF)

Petit, Milam, Murray

NOLCOS, 2001

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html

Richard M. Murray, Caltech CDSEECI, Mar 09 7

Solve finite time optimization over T seconds and implement first !T seconds

Requires that computation time be small relative to time horizons

• Initial implementation in process control, where time scales are fairly slow

• Real-time trajectory generation enables implementation on faster systems

Finite horizon

optimization

Terminal cost

Receding Horizon Control
Murray, Hauser et al

SEC chapter (IEEE, 2002)

time

state Actual

state

!T

T

Computed state

Richard M. Murray, Caltech CDSEECI, Mar 09 8

Stability of Receding Horizon Control

RHC can destabilize systems if not done properly

• For properly chosen cost functions, get stability with T sufficiently large

• For shorter horizons, counter examples show that stability is trickier

Thm (Jadbabaie & Hauser, 2002). Suppose that the terminal cost V(x) is a control
Lyapunov function such that

for each x ! #r = {x: V(x) < r2}, for some r > 0. Then, for every T > 0 and !T ! (0; T], the

resulting receding horizon trajectories go to zero exponentially fast.

Remarks

• Earlier approach used terminal trajectory constraints; hard to implement in real-time

• CLF terminal cost is difficult to find in general, but LQR-based solution at equilibrium
point often works well - choose V = xT P x where P = Riccati soln

Richard M. Murray, Caltech CDSEECI, Mar 09 9

From Real-Time Trajectory Generation to RHC

Three key elements for making RHC fast enough for motion control apps

• Fast computation to optimize over many variables quickly

• Differential flatness to minimize the number of dynamic constraints

• Optimized algorithms including B splines, colocation, and SQP solvers

Use of feedback allows substantial approximation

• Approximate computations since result will be recomputed using actual state

• NTG exploits this principle through the use of collocation

Tuning tricks

• Compute predicted

state to account for

computation times

• Optimize collocation

times and

optimization horizon

• Choose sufficiently

smooth spline basis

Richard M. Murray, Caltech CDSEECI, Mar 09 10

Example: Flight Control

dSPACE-based control system

• Two C30 DSPs + two 500 MHz DEC/Compaq/HP Alpha processors

• Effective servo rates of 20 Hz (guidance loop)

Franz, Milam et al
ACC 2002

Richard M. Murray, Caltech CDSEECI, Mar 09 11

Networked Control Systems

Richard M. Murray, Caltech CDSEECI, Mar 09

Problem Setup

• Given a dynamical system with noise and uncertainty, estimate the state

• is called the estimate of x

Discrete-time systems

12

The State Estimation Problem

Process Controller

Estimator

!
disturbances noise

estimator

expected value

x[k + 1] = Ax[k] + Bu[k] + Fv[k]
y[k] = Cx[k] + w[k],

˙̂x =α(x̂, y, u)
lim

t→∞
E{x− x̂} = 0

prediction correction

estimator
gain

x̂[k + 1] = Ax̂[k] + Bu[k] + L(y[k]− Cx̂[k])

Richard M. Murray, Caltech CDSEECI, Mar 09

System description

• Disturbances and noise are multi-variable Gaussians with covariance Rv, Rw

Problem statement: Find the estimate that minimizes the mean square error

Proposition

• For Gaussian noise, optimal estimate is the expectation of the random process x
given the constraint of the observed output:

• Can think of this as a least squares problem: given all previous y[k], find the
estimate that satisfies the dynamics and minimizes the square error with the
measured data.

13

Optimal Estimation

x[k + 1] = Ax[k] + Bu[k] + Fv[k]
y[k] = Cx[k] + w[k],

E{v[k]} = 0

E{v[k]v[j]T } =

{
0 k != j

Rv k = j

E{(x[k]− x̂[k])(x[k]− x̂[k])T }

x̂[k] = E{X[k] |Y [l], l ≤ k}

x̂[k]

Richard M. Murray, Caltech CDSEECI, Mar 09 14

Kalman Filter

Thm (Kalman, 1961) The observer gain L that minimizes the mean square error is
given by

where

Proof (easy version). Let . By definition,

Letting ,

to minimize covariance, choose

L[k] = AP [k]CT (Rw + CP [k]CT)−1

P [k + 1] = (A− LC)P [k](A− LC)T + Rv + LRwLT

P0 = E{X(0)XT (0)}.

P [k + 1] = E{x[k + 1]x[k + 1]T }
= AP [k]AT −AP [k]CT LT − LCAT + L(Rw + CP [k]CT)LT .

Rε = (Rw + CP [k]CT)

P [k + 1] = AP [k]AT +
(
L−AP [k]CT R−1

ε

)
Rε

(
L−AP [k]CT R−1

ε

)T

−AP [k]CT R−1
ε CP [k]T AT + Rw.

L = AP [k]CT R−1
ε

P [k] = E{(x̂[k]− x[k])(x̂[k]− x[k])T }

Richard M. Murray, Caltech CDSEECI, Mar 09

Kalman Filtering with Intermittent Data

Kalman filter has “predictor-corrector” form

• Key idea: updated prediction on each iteration; apply correction when data arrives

Alternative formulation

• Prediction:

• Correction:

15

P [k + 1] = AP [k]AT + Rw −AP [k]CT R−1
ε CP [k]T AT

x̂[k + 1] = Ax̂[k] + Bu[k] + L(y[k]− Cx̂[k])

prediction correction

x̂[k|k] = x̂[k|k − 1] + L[k](y[k]− Cx̂[k|k − 1])

P [k|k] = P [k|k − 1]− P [k|k − 1]CT (CP [k|k − 1]CT + Rw[k])−1CP [k|k − 1]

x̂[k + 1|k] = Ax̂[k|k] + Bu[k]

P [k + 1|k] = AP [k|k]AT + FRv[k]FT

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Extension: Information Filter

Idea: rewrite Kalman filter in terms of inverse covariance

Resulting update equations become linear:

Remarks

• Information form allows simple addition for correction step: “additional measurements add

information”

• Sensor fusion: each additional sensor increases the information

•Multi-rate sensing: whenever new information arrives, add it to the scaled estimate,

information matrix; no date => prediction update only

• Derivation of the information filter is non-trivial; not easy to derive from Kalman filter

16

I[k|k] = I[k|k − 1] +
q∑

i=1

Ωi[k]

Ẑ[k|k] = Ẑ[k|k − 1] +
q∑

i=1

Ψi[k]

I[k|k] := P−1[k|k], Ẑ[k|k] := P−1[k|k]X̂[k|k]

Ωi[k] := CT
i R−1

Wi
[k]Ci, Ψi[k] := CT

i R−1
Wi

[k]CiX̂[k|k]

X̂[k|k − 1] = (1− Γ[k]FT)A−T X̂[k − 1|k − 1] + I[k|k − 1]Bu

I[k|k − 1] = M [k]− Γ[k]Σ[k]ΓT [k]

M [k] = A−T P−1[k − 1|k − 1]A−1

Γ[k] = M [k]Fσ−1[k]

Σ[k] = FT M [k]F + R−1
v

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Extension: Moving Horizon Estimation

System description:

Pose as optimization problem:

Remarks:

• Basic idea is to compute out the “noise” that is

required for data to be consistent with model and

penalize noise based on how well it fits its distribution

17

Henrik Sandberg, 2005

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Extension: Moving Horizon Estimation

Solution: write out probability and maximize

Special case: Gaussian noise

• Log of the probabilities sum of squares for noise terms

• Note: switched use of w and v from Friedland (and course notes)

18

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Extension: Moving Horizon Estimation

Key idea: estimate over a finite window in the past

Example (Rao et al, 2003): nonlinear model with positive disturbances

• EKF handles nonlinearity, but assumes noise

is zero mean => misses positive drift

19

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Sequential Monte Carlo

• Rough idea: keep track of many possible states of the system via individual “particles”

• Propogate each particle (state estimate + noise) via the system model with noise

• Truncate those particles that are particularly unlikely, redistribute weights

Remarks

• Can handle nonlinear, non-Gaussian processes

• Very computationally intensive; typically need to exploit problem structure

• Being explored in many application areas (eg, SLAM in robotics)

• Lots of current debate about information filters versus MHE versus particle filters

Extension: Particle Filters

20

Richard M. Murray, Caltech CDSEECI, Mar 09 21

Networked Control Systems

Next: effects of the network...

Richard M. Murray, Caltech CDSEECI, Mar 09 22

Causality in Distributed Communications (Lamport, ‘78)

Partial ordering: a $ b

• If a and b are events in the same

process, then a $ b

• If a is the sending of a message by one

process and b is the receipt of the same

message by another process, then a $

b

• If a $ b and b $ c then a $ c

• a $ b means “a can causally effect b”

Logical Clocks

• Let Ci%a& be a clock for process Pi that

assigns a number to an event

• Define C%b& = Cj%b& if b is an event in

process Pj

• Clock condition: for any two events a, b: if

a $ b then C%a& < C%b&

Remarks

• Events are partially ordered: can compare

some events but not all events

• Example: p1 $ q3 but p3 and q3 are no

related

• Clocks are not unique (can choose any

set of integers with appropriate relations)

Richard M. Murray, Caltech CDSEECI, Mar 09 23

Group Messaging Systems
Group

• Collections of processes that can send
messages back and forth to everyone

• Messaging system has to keep track of
people joining and leaving groups

• Goal: deliver packets reliably and
causally

Ex: Alice NCS group message types

• Modules receive certain message types

Issues

• Need to track membership over time

• Need to provide different levels of

reliability (at the group level)

• Need to provide different levels of

ordering (or causality)

• Also need to keep track of the fact that

time may be different on different

computers (no global clock)

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

Richard M. Murray, Caltech CDSEECI, Mar 09 24

Message Ordering (“Virtual Synchrony”)
Ordering

• None - No ordering guarantee.

• Fifo by Sender- All messages sent by

this sender are delivered in FIFO order.

• Causal - All messages sent by all

senders are delivered in Lamport causal

order.

• Total Order - All messages sent by all

senders are delivered in the exact same

order to all recipients

Remarks

• Imposing causality increases message

overhead; need to make sure that

everyone has the message

• Things get interesting with multiple groups

- everyone in same collection of groups

should receive all messages in same

order

• HW: figure out an example where causal

and total order are different

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

Richard M. Murray, Caltech CDSEECI, Mar 09 25

Message Reliability (“Extended Virtual Synchrony”)
Reliability

• Unreliable - Message may be dropped or

lost and will not be recovered.

• Reliable - Message will be reliably

delivered to all recipients who are in

group to which message was sent.

• Safe - The message will ONLY be

delivered to a recipient if everyone

currently in the group definitely has the

message

Remarks

• Key issue is keeping track of reliability in

groups. Reliable messages should be

received by everyone (eventually).

• Requires agreement algorithm across

computers (who has what)

• HW: find an example where reliable

messages are not safe.

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

Richard M. Murray, Caltech CDSEECI, Mar 09 26

Spread Toolkit (Stanton ‘02)

Spread Functions

• SP_connect: establish a connection with

the spread daemon

• SP_disconnect: terminate connection

• SP_join(mbox. group): join a group

• SP_leave(mbox. group): leave a group

• SP_multicast(…, group, message, type):

send a message to everyone in group of

given type

• SP_receive: receive a message

Message types

• Unreliable - no order, unreliable

• Reliable - no order, reliable

• FIFO - FIFO by sender, reliable

• Causal - Causal (Lamport), reliable

• Agreed - Totally ordered, reliable

• Safe - Totally ordered, safe

• Note: each message has a type; these

can be mixed within groups

Computer 1 Spread
Server

P1 P2 P3

Computer 2 Spread
Server

P1 P2 P3

Computer 3

P1 P2 P3

Group 1

Group 2

Richard M. Murray, Caltech CDSEECI, Mar 09 27

Traditional Control Systems Implementation (Sparrow)

Simplest case: interrupt driven loop

• Use HW/SW interrupts to run control

routine at an accurate and fixed rate

• “Servo loop” overrides normal program

operation

• Need to be careful about interaction of

variables in servo loop with main pgm

Variations:

• Time-triggered protocols - scheduling of

events to allow multiple “servos”

Sample program

• Discrete time implementation

• Uses quasi-sparrow implementation

load_controller(file)

servo_setup(loop, rate, flags);

servo_enable();

loop()

{

! y = read_measurement();

 r = read_reference();

! xnew = Ac * x + Bc * (r - y);

 u = Cc * x + Dc * (r - y);

 write_control(u);

 x = xnew;

}

C(s) P(s)

Tustin

Richard M. Murray, Caltech CDSEECI, Mar 09 28

Multi-Threaded Programming

Basic Idea

• Separate code into independent

segments (“threads”)

• Switch between threads, allowing each

to run “simultaneously”

• Threads share memory and devices;

allows rapid sharing of information

Threads vs Processes

• Processes have separate memory space

and device handles

• Requires interprocess communication to

share data

Advantages

• Avoid manual coding to eliminate pauses

due to hardware response

•Multiple control loops become separate

threads; OS insures execution

• Allows messages (or signals) to be

received in middle of long computation

Issues

• Race conditions

• Dead locks (“deadly embrace”)

• Asynchronous operations

(wait)(wait)

(wait)

(wait)
read_meas ctrl

computation

write_ctrl

suspended
executionSingle threaded execution Multi-threaded execution

Richard M. Murray, Caltech CDSEECI, Mar 09

Verifying Multi-Threaded Programs

SPIN (Holzmann)

• Model system using PROMELA (Process

Meta Language)

- Asynchronous processes

- Buffered and unbuffered message

channels

- Synchronizing statements

- Structured data

• Simulation: Perform random or iterative

simulations of the modeled system's

execution

• Verification: Generate a C program that

performs a fast exhaustive verification of

the system state space

• Check for deadlocks, livelocks,

unspecified receptions, and unexecutable

code, correctness of system invariants,

non-progress execution cycles

• Also support the verification of linear time

temporal constraints

TLA/TLC (Lamport et al)

• Temporal Logic of Actions (TLA): Leslie

Lamport, 1980’s

• Behavior (a sequence of states) is

described by an initial predicate and an

action

Spec ! Init " !Action

• Specify a system by specifying a set of

possible behaviors

• Theorem: A temporal formula satisfied by

every behavior

Theorem ! Spec ⇒ !Properties

TLA+

• Can be used to write a precise, formal

description of almost any sort of discrete

system

• Especially well suited to describing

asynchronous systems

• Tools: Syntactic Analyzer, TLC model

checker

29

Richard M. Murray, Caltech CDSEECI, Mar 09 30

Summary: Embedded Systems Programming

Advantages

• Increased modularity

• Simplified programming*

Cautions

• Asynchronous execution

• Race conditions

• Deadlocking

• Debugging

Open Issues for Control Theory

• How do we best implement
controllers in this setting?

• How do we verify that programs
satisfy the specifications and design
intent

• How do we implement multi-rate
controllers using threaded process
and distributed computing?

(wait)

(wait)

(wait)(wait)

read_meas ctrl

computation

write_ctrl

