Lecture 2:
Optimization-Based Control

Richard M. Murray
Caltech Control and Dynamical Systems
16 March 2009

Goals:
* Review trajectory generation and receding horizon control (online optimization)
* Review the Kalman filtering problem for state estimation and sensor fusion

* Describe some implementation tools (spread, pthreads) for optimization-based
control

Reading:
* AMO8 supplement: Optimization-Based Control, Murray, 2009
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Murray, Hauser et al
SEC chapter (IEEE, 2002)

Control Architecture: Two DOF Design

Nonlinear design Local design
« global nonlinearities
* input saturation A
* state space constraints S
u, noise__| Plant | output
P
ref —|  Trajectory
Generation
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Optimal Control LQR/PID
e Use nonlinear trajectory generation to construct (optimal) feasible trajectories

e Use local control to handle uncertainty and small scale (fast) disturbances
® Receding horizon control: iterate trajectory generation during operation
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Trajectory Generation Using Differential Flatness

x = f(x,u) x = x(z, 2,...,z9)
z = h(xa u, ua"'au(p)) — u = u(Z, 2,...,Z(q))
‘u‘ < L Complicated (algebraic) constraints

- 2(0) ] F2(T) ] ,-
£(0) - XT) z=Yan'®
Z,=| Z(0) Nz, =| ZT) _
: : Mo = [zo]
5

Z(q)(o) Z(q) (T)
e Use basis functions to parameterize output => linear problem in terms of coefficients
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Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

min.]—/ L(z,u)dt + V(x(T),u(T))

to
Input constraints

subject to &= f(z,u) g(z,u) <0 — { . State constraints

If system is flat, once again we get an algebraic problem:

_ : (@) T
X = X(Z, Zy oo Z ) min.]—/ L(a,t)dt + V(a)
u =u(z,z,...,z'7) _ to
gla,t) <0

z=Yay'()

Finite parameter optimization problem

e Constraints hold at all times = potentially over-constrained optimization
e Numerically solve by discretizing time (collocation)
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Petit, Milam, Murray
NOLCOS, 2001

NTG: Nonlinear Trajectory Generation

Flatness-based optimal control package
® B-spline representation of (partially) flat outputs
e Collocation based optimization approach
o Built on NPSOL optimization pkg (requires license)
e \Warm start capability for receding horizon control

F N

Solves general nonlinear optimization problem

T
min.]—/ g(z,uw) dt + V(z(T),u(T)) |%°

to

z = flz,u) Ib<g(z,u) <ub { ; ! ]

e Assumes x and u are given in terms of (partially) flat outputs
e Constraints are enforced at a user-specified set of collocation points
e Gives approximate solution; need to use w/ feedback to ensure robustness (2 DOF)

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
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Murray, Hauser et al
SEC chapter (IEEE, 2002)

Receding Horizon Control

—N
AN \
AT @ / Computed state \

T time

state Actual
state

2N

Solve finite time optimization over T seconds and implement first AT seconds
T
Uy, oar) = AT minﬂ+ L(x(t),utt))dt +V(x(t+T))
X, = x(1) X, =2, t+T) \ Finite horizon \ Terminal cost
’ optimization
S(xu) glxu)=0

Requires that computation time be small relative to time horizons

X

e |nitial implementation in process control, where time scales are fairly slow

e Real-time trajectory generation enables implementation on faster systems
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Stability of Receding Horizon Control

RHC can destabilize systems if not done properly
e For properly chosen cost functions, get stability with T sufficiently large
e For shorter horizons, counter examples show that stability is trickier

Thm (Jadbabaie & Hauser, 2002). Suppose that the terminal cost V(x) is a control
Lyapunov function such that

min(V + L)(z,u) <0
for each x € Q, = {x: V(x) < r?}, for some r > 0. Then, for every T> 0 and AT e (0; T], the

resulting receding horizon trajectories go to zero exponentially fast.

Remarks
e Earlier approach used terminal trajectory constraints; hard to implement in real-time

e CLF terminal cost is difficult to find in general, but LQR-based solution at equilibrium
point often works well - choose V' = x” P x where P = Riccati soln
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From Real-Time Trajectory Generation to RHC

Three key elements for making RHC fast enough for motion control apps
e Fast computation to optimize over many variables quickly
o Differential flatness to minimize the number of dynamic constraints
e Optimized algorithms including B splines, colocation, and SQP solvers

Use of feedback allows substantial approximation

e Approximate computations since result will be recomputed using actual state

e NTG exploits this principle through the use of collocation

t

herizon

state Actual

WY

Predicted
Trajectory

Receding
Horizon

Reference
Trajectory

t

sample

Trigger 1 Trigger 2 Trigger 3 Trigger 4 Trigger 5 Trigger 6
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Tuning tricks
» Compute predicted
state to account for
computation times
» Optimize collocation
times and
optimization horizon

» Choose sufficiently
smooth spline basis

Example: Flight Control

dSPACE-based control system

Franz, Milam et al
ACC 2002

e Two C30 DSPs + two 500 MHz DEC/Compaq/HP Alpha processors

o Effective servo rates of 20 Hz (guidance loop)
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Networked Control Systems
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The State Estimation Problem

A
disturbances L J noise
U > >

— Controller

Process U

Estimator >

Problem Setup
e Given a dynamical system with noise and uncertainty, estimate the state

& = Az + Bu+ Fv & =a(Z,y,u) estimator
_> . A
y = Cz + Du+ Gw thmE{:r—:c}:O
— OO ¥
e 7 is called the estimate of x expected value
estimator
Discrete-time systems gain

2lk +1] = Azlk] + Bu[k] + Fo[k] 2k + 1] = A&[k] + Bulk] + L(y[k] — C2[k])
ylk] = Cx[k] + wlk], e e

prediction correction
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Optimal Estimation

System description E{v[k]} =0

xzlk + 1] = Ax[k] + Bulk] + Fvlk] e JO O k#£
yli] = Calk] + wlk], PRkl = {Rv k=)

e Disturbances and noise are multi-variable Gaussians with covariance R, R,

Problem statement: Find the estimate that minimizes the mean square error
E{(x[k] — 2[K])(z[k] — 2[k])"}
Proposition

e For Gaussian noise, optimal estimate is the expectation of the random process x
given the constraint of the observed output:

2[k] = E{X[K[Y]l], 1 <k}

e Can think of this as a least squares problem: given all previous y[k], find the
estimate i [k] that satisfies the dynamics and minimizes the square error with the
measured data.
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Kalman Filter

Thm (Kalman, 1961) The observer gain L that minimizes the mean square error is
given by

L[k] = AP[k]CT(R,, + CP[k]CT)™!
where
Plk+1] = (A— LC)P[k)(A — LC)T + R, + LR, L"
Py = E{X(0)XT(0)}.

Proof (easy version). Let P[k] = E{(2[k] — z[k])(2[k] — z[k])T} By definition,
Pk + 1] = BE{z[k + 1]z[k + 1]*}
= AP[k|AT — AP[k]ICT LT — LCAT + L(R,, + CP[k]CT)L".
Letting R. = (R,, + CP[k]CT)
Plk +1] = AP[k]AT + (L — AP[K]CTR;')R.(L — AP[k]ICTR")
— AP[K|CTR-*CP[k|T AT + R,,.

to minimize covariance, choose L = AP[k|CT R !

T
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Kalman Filtering with Intermittent Data
Kalman filter has “predictor-corrector” form
z[k + 1] = Az[k] + Bulk] + L(y[k] — Cz[k])

Plk + 1] = AP[k]A” + R, — AP[kJCTR-*CP[k]T AT

~
prediction correction

e Key idea: updated prediction on each iteration; apply correction when data arrives

Alternative formulation
e Prediction:

z[k + 1|k] = Az[k|k] + Bulk]
Plk + 1|k] = AP[k|k]AT + FR,[k]FT
e Correction:
zk|k] = z[k|k — 1] + L[k](y[k] — Cz[k|k — 1])
Plk|k] = Plk|k — 1] — P[k|k — 1]CT(CP[1<:\I<: — 1]CT + Rw[k])_lCP[kM: —1]
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Extension: Information Filter

Idea: rewrite Kalman filter in terms of inverse covariance
I[k|k] := P~ [k|K], Z[k|k] := P71 [k|k] X [k|k]
QK] == Cf Ry, [K]C, U, (k] := CF Ryt [F]Ci X [k[ k]
Resulting update equations become linear:
X[klk—1] = (1 =Tk FHA X[k — 1|k — 1) + I[k|k — 1] Bu
Ik|k — 1] = M[k] — T[k]Z[k]T7 [k]

q
I[k|k] = I[klk — 1]+ > Qi[k] Mkl = ATP k- 1|k —1]A~"
= T[k] = M[k]Fo'[k]
Zk|k] = Z[klk — 1]+ ;K] S[k] = FTM[k]F + R;!
Remarks =
« Information form allows simple addition for correction step: “additional measurements add
information”

» Sensor fusion: each additional sensor increases the information

» Multi-rate sensing: whenever new information arrives, add it to the scaled estimate,
information matrix; no date => prediction update only

« Derivation of the information filter is non-trivial; not easy to derive from Kalman filter

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 16



Extension

System description:

Xp+1 = fk(xk,wk)
Vi = hp(x) + v

The problem: Given the data

Pose as optimization problem:

{%o,...,%7} = arg max
X0 yeees XT

Remarks:

HYCON-EECI, Mar 08

Y,={y:0<i<k}

find the “best” (to be defined) estimate %;.,,, of x;.,.
(m = 0 filtering, m > 0 prediction, and m < 0 smoothing.

}P(xo, ooy xp|Y7_4)

» Basic idea is to compute out the “noise” that is g of i k : 1
required for data to be consistent with model and
penalize noise based on how well it fits its distribution

Henrik Sandberg, 2005

: Moving Horizon Estimation

2, €Xp, wpr€Wg, v, €V,

7
EE
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arg max p(x()’ ce :ley(), cees yT—l)
{xgsmzp }

=1

= arg max

k=0
T-1
= arg

7 p=0

Special case: Gaussian noise

T-1
{min } E lye —

20,{wo ..., W _

0 0 T-1 k=0

» Note: switched use of w and v from

HYCON-EECI, Mar 08

Extension: Moving Horizon Estimation

Solution: write out probability and maximize

Pro(%0) [ poi (9& — h(xk))p(ars1|xk)
{x0,er}

e > " log pu, (& — k() +10g p(p1|24) + 10g Py (x0)

o) s + ol + o —

« Log of the probabilities sum of squares for noise terms

Friedland (and course notes)

R. M. Murray, Caltech CDS



Extension: Moving Horizon Estimation

Key idea: estimate over a finite window in the past

] . Estimation Window
y A
71 T-N-1 A/
D7 = miI%‘ . Z Ly (wg,vr) + Z Ly (wp,vi) + T'(x0) / \/
itz \p2r N k=0 N/ .
T-1 -
= min Ly(wy,vp) + Zr-n(2) | -

2€Rr_nAwe}fF N (kﬂZ_N : -

Example (Rao et al, 2003): nonlinear model with positive disturbances

X1 he1 = 0.992 ) +0.2x2 S |
Zope1 = —0.1x1 + “_7 + wp, ]
2.k |

Ve = X1k — 3%2k + Uk

* EKF handles nonlinearity, but assumes noise
is zero mean => misses positive drift
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Extension: Particle Filters

Sequential Monte Carlo

* Rough idea: keep track of many possible states of the system via individual “particles”
» Propogate each particle (state estimate + noise) via the system model with noise

« Truncate those particles that are particularly unlikely, redistribute weights

Remarks

« Can handle nonlinear, non-Gaussian processes

« Very computationally intensive; typically need to exploit problem structure

* Being explored in many application areas (eg, SLAM in robotics)

« Lots of current debate about information filters versus MHE versus particle filters

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 20



Networked Control Systems
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Next: effects of the network...
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Causality in Distributed Communications (Lamport, '78)

process P

o
E:JU o

y / process Q
Q 0 =]
o o) S
-

process R

P2

Py

Partial ordering: a — b

e |f a and b are events in the same
process, thena — b

e If ais the sending of a message by one
process and b is the receipt of the same
message by another process, then a —
b

e Ifa—bandb—-cthena—c
e a — b means “a can causally effect b”

EECI, Mar 09

Logical Clocks

« Let C{a) be a clock for process P;that
assigns a number to an event

« Define C(b) = C(b) if b is an event in
process P;

« Clock condition: for any two events a, b: if
a — b then C{a) < C(b)

Remarks

« Events are partially ordered: can compare
some events but not all events

« Example: p; — g3 but p; and g5 are no
related

« Clocks are not unique (can choose any
set of integers with appropriate relations)

Richard M. Murray, Caltech CDS 22



Group Messaging Systems

Group

e Collections of processes that can send
messages back and forth to everyone

e Messaging system has to keep track of
people joining and leaving groups

e Goal: deliver packets reliably and
causally

Ex: Alice NCS group message types
e Modules receive certain message types

Issues
* Need to track membership over time

» Need to provide different levels of
reliability (at the group level)

* Need to provide different levels of
ordering (or causality)

« Also need to keep track of the fact that
time may be different on different
computers (no global clock)

Safety Mon. jz/

State Estimate

Feeder 2 \g o /\ [- X /\ > [
FusionMapper | / ]\ -\‘,‘ / / \\ / / / R /'/.\ 'I/- /X\ / / S
BN NN AN A AN W

BB UAVEAN

Planner
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Message Ordering ("Virtual Synchrony™)
Ordering Remarks

e None - No ordering guarantee.

e Fifo by Sender- All messages sent by
this sender are delivered in FIFO order.

e Causal - All messages sent by all
senders are delivered in Lamport causal
order.

e Total Order - All messages sent by all
senders are delivered in the exact same
order to all recipients

« Imposing causality increases message
overhead; need to make sure that
everyone has the message

» Things get interesting with multiple groups
- everyone in same collection of groups
should receive all messages in same
order

« HW: figure out an example where causal
and total order are different

Feeder | R& / \ [ =\£ / 4\ [ .
o NS i YAANN
FusionMapper // \‘\ / \

Safety Mon. j[

State Estimate O

Planner
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Message Reliability ("Extended Virtual Synchrony”)

Reliability Remarks

e Unreliable - Message may be dropped or » Key issue is keeping track of reliability in
lost and will not be recovered. groups. Reliable messages should be

o Reliable - Message will be reliably received by everyone (eventually).
delivered to all recipients who are in » Requires agreement algorithm across
group to which message was sent. computers (who has what)

e Safe - The message will ONLY be * HW: find an example where reliable
delivered to a recipient if everyone messages are not safe.
currently in the group definitely has the
message
Feeder | / : =\A & >
A N A

| ANV AN N AN
WL N NNV
Safety Mon. - Q ," % -

State Estimate

Planner
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Spread Toolkit (Stanton '02)
Computer | Computer 2 Computer 3

Group |
””””””””””””””””””””””””””””””””” Growp2 T
Spread Functions Message types

e SP_connect: establish a connection with  Unreliable - no order, unreliable

the spread daemon « Reliable - no order, reliable
e SP_disconnect: terminate connection « FIFO - FIFO by sender, reliable
e SP_join(mbox. group): join a group « Causal - Causal (Lamport), reliable
e SP_leave(mbox. group): leave a group « Agreed - Totally ordered, reliable
e SP_multicast(..., group, message, type): » Safe - Totally ordered, safe

send a message to everyone in group of

given typ-e * Note: each message has a type; these
e SP_receive: receive a message can be mixed within groups

EECI, Mar 09 Richard M. Murray, Caltech CDS 26



Traditional Control Systems Implementation (Sparrow)

C(s) o[ P(s) >

—'(?—'

C(s) C(z)

Simplest case: interrupt driven loop
o Use HW/SW interrupts to run control
routine at an accurate and fixed rate
e “Servo loop” overrides normal program
operation
e Need to be careful about interaction of
variables in servo loop with main pgm

Tustin
—

Variations:

e Time-triggered protocols - scheduling of
events to allow multiple “servos”

EECI, Mar 09

Sample program
« Discrete time implementation

Zk_l,_l = AcZk + Bce
Yy = Cezp + Dce

» Uses quasi-sparrow implementation

load_controller(file)
servo_setup(loop, rate, flags);

servo_enable();

loop()

{
y = read_measurement();
r = read_reference();
xXnew = Ac * X + Bc * (r - y);
u==C * x+Dc * (r -y);
write_control(u);

X = Xnew;

Richard M. Murray, Caltech CDS
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Multi-Threaded Programming

Single threaded execution

G ] T o |

read_meas ctrl write_ctrl

computation

suspended
execution

| I (wait)

Multi-threaded execution /
|

Basic Idea

e Separate code into independent
segments (“threads”)

e Switch between threads, allowing each
to run “simultaneously”

e Threads share memory and devices;
allows rapid sharing of information

Threads vs Processes

® Processes have separate memory space
and device handles

e Requires interprocess communication to
share data

EECI, Mar 09

Advantages
¢ Avoid manual coding to eliminate pauses
due to hardware response

» Multiple control loops become separate
threads; OS insures execution

« Allows messages (or signals) to be
received in middle of long computation

Issues

« Race conditions

* Dead locks (“deadly embrace”)
* Asynchronous operations

Richard M. Murray, Caltech CDS
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Verifying Multi-Threaded Programs

SPIN (Holzmann)

e Model system using PROMELA (Process
Meta Language)

= Asynchronous processes

- Buffered and unbuffered message
channels

= Synchronizing statements
= Structured data

e Simulation: Perform random or iterative
simulations of the modeled system's
execution

e \erification: Generate a C program that
performs a fast exhaustive verification of
the system state space

e Check for deadlocks, livelocks,
unspecified receptions, and unexecutable
code, correctness of system invariants,
non-progress execution cycles

e Also support the verification of linear time
temporal constraints

TLA/TLC (Lamport et al)

e Temporal Logic of Actions (TLA): Leslie
Lamport, 1980’s

e Behavior (a sequence of states) is
described by an initial predicate and an
action

Spec = Init A OAction
e Specify a system by specifying a set of
possible behaviors

e Theorem: A temporal formula satisfied by
every behavior

Theorem = Spec = O Properties

TLA+

e Can be used to write a precise, formal
description of almost any sort of discrete
system

e Especially well suited to describing
asynchronous systems

e Tools: Syntactic Analyzer, TLC model

checker
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Summary: Embedded Systems Programming
Feeder1 —¢ - e X
\ﬁ ; f \ ! f [ (wai) | | [ | a9 |
Feeder 2 ® ,'/ At read_meas ctrl  write_ctrl
[N “ [f \\( [f computation
sionMapper
Safety Mon. ‘ # L q_‘
! (wait) | | |
‘ | [ i 1] |
Advantages Open Issues for Control Theory

® |ncreased modularity
e Simplified programming*

Cautions
e Asynchronous execution
® Race conditions
e Deadlocking
e Debugging

EECI, Mar 09

e How do we best implement
controllers in this setting?

e How do we verify that programs
satisfy the specifications and design
intent

¢ How do we implement multi-rate
controllers using threaded process
and distributed computing?
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