
ME132b — Lab 1

Vasu Raman, Scott C. Livingston

release: 3 Apr 2015
deadline: 10 Apr 2015

Summary

Students will control a differential drive robot whose motion is constrained to have a
minimum forward and maximum angular velocity. Students will make the robot visit
waypoints in a space with static obstacles.

1 Objectives

• Recall creation of a simple ROS package.

• Recall running simulations in Stage.

• Implement a controller that steers the differential drive robot to visit a given list of
waypoints.

• Experience the challenge of motion planning under constrained kinematics.

2 Logistics

This lab exercise makes use of the files in me132a-final-20150306.tar.
As in ME/CS 132a, you will have the option of remote access to an Ubuntu 14.04 (Linux)

server that has all necessary software installed. Please contact Scott slivingston@cds.caltech.edu
about getting an account. Alternatively, if you want to install it on your own, it should
suffice to obtain the “desktop-full” distribution of ROS “Indigo”; consult instructions at
http://wiki.ros.org/indigo/Installation.

An important part of this assignment is running your controller in the lab. You will need
to schedule a lab session during the week of April 6 to do this. Announcements will be made
during lecture or via the course website concerning available times.

If you have any requests or concerns with respect to lab accessibility, please contact us be-
fore your lab session. You may find additional helpful resources at http://diversitycenter.
caltech.edu and http://disability.caltech.edu.

1

mailto:slivingston@cds.caltech.edu
http://wiki.ros.org/indigo/Installation
http://diversitycenter.caltech.edu
http://diversitycenter.caltech.edu
http://disability.caltech.edu

3 Background

Recall that a differential drive robot can simulate a unicycle, with the kinematics

ẋ(t) = ν(t) cos (θ(t)) (1)

ẏ(t) = ν(t) sin (θ(t))

θ̇(t) = ω(t),

where ν(t) and ω(t) are control inputs, and (x(t), y(t), θ(t)) is the robot’s pose (2D position
and orientation) at time t. Here ν(t) is commonly referred to as the forward velocity of the
robot, and ω(t) the turning rate at time t. In this lab, we will control the Kobuki robots
by directly commanding these velocities, instead of applying torques to the wheels separately.

4 Steps

4.1 Required

1. Let a and b be nonzero real numbers. Given constant control inputs ν(t) = a and
ω(t) = b for t ∈ [0, T], verify that the first two coordinates of the solution to the
ODE in (1) from any initial state form a trajectory contained in a circle. Precisely,
recall that for inputs ν, ω defined on the interval [0, T], a solution of (1) is a function
(x(t), y(t), θ(t)) on [0, T]. Show that there exists (c1, c2) ∈ R2 and r > 0 such that for
all t ∈ [0, T], (x(t)− c1)2 + (y(t)− c2)2 = r2.

2. Run wander.py or wander.cpp from me132a epoch in simulation to remind yourself
of what it does. Consult the README file in this directory for instructions.

3. Write a function to follow a sequence of waypoints while obeying each combination of
the following constraints on the robot’s forward and angular velocity:

ν(t) ≥ νmin such that νmin ∈ {0.1, 0.2, 0.4, 0.6}
|ω(t)| ≤ ωmax such that ωmax ∈ {0.2, 0.4, 1, 1.5},

where the units of ν(t) and ω(t) are m/s and rad/s, respectively.

Your function should take as input a list of waypoints provided as a plaintext file with
one waypoint per row and space-separated x and y values for each waypoint. This
list can be arbitrarily long and can contain duplicate copies of a particular waypoint.
Waypoints must be visited in the order given. An example is included at the end of
this assignment.

After all waypoints are visited, the robot should come to a halt at the last waypoint.

2

You can assume the obstacles are known and static, but since the robot’s position
estimate is based on the robot’s odometry and as such includes odometry errors, your
code should provide some way for your robot to avoid collisions with the obstacles.

4. Demonstrate your controller in simulation prior to beginning your lab session.

4.2 Optional (Visualization)

In both simulation and the lab sessions, the following may be useful or fun, but are not
crucial for completion of the assignment.

1. In both the lab session and simulation, watch the robot pose and range finder data
using rviz (http://wiki.ros.org/rviz), a tool for real-time visualization.

2. Capture a snapshot of the known frames and transforms using view frames from the
tf package (http://wiki.ros.org/tf).

rosrun tf view_frames

5 Deliverables

Please submit the following.

1. Your response to the first item in the list of requirements.

2. the complete ROS package in which you implement control and mapping. You must
include a README or other concise instructions for reproducing results in simulation.
E.g., you could provide a list of terminal commands and a few words describing intent,
to aid in debugging in case the commands fail.

3. A written paragraph summarizing your conclusions from the lab. Were there particular
settings of minimum forward and maximum angular velocity that made traversing the
series of waypoints you chose more challenging? How did these constraints impact the
reach error you were able to achieve?

There is no need to write a lengthy lab report. Providing the above in a tarball suffices.
You should include your email address or telephone number so that the TA can contact you
in case your submission fails (apparently) prematurely. This is not required but provides a
back-up in case you make a trivial but epic mistake.

6 References

6.1 Kinematics for Wheeled Systems

• LaValle, Chapter 13.1.2.

3

http://wiki.ros.org/rviz
http://wiki.ros.org/tf

6.2 ROS, Stage, etc.

• Concepts of ROS – http://wiki.ros.org/ROS/Concepts

• The package that wraps Stage in ROS – http://wiki.ros.org/stage_ros

• ROS node driver for the Hokuyo range finder – http://wiki.ros.org/urg_node

• roslaunch file syntax – http://wiki.ros.org/roslaunch/XML

• rosbag, tools for logging – http://wiki.ros.org/rosbag

• Stage documentation – http://rtv.github.io/Stage/

6.3 Hardware

1. Kobuki by Yujin Robot – http://kobuki.yujinrobot.com

2. Hokuyo URG-04LX-UG01 range finder – http://www.hokuyo-aut.jp/02sensor/07scanner/
urg_04lx_ug01.html

6.4 Unix terminal

1. The Command Line Crash Course by Zed A. Shaw – http://cli.learncodethehardway.
org/book/

2. An introduction to using SSH by Caltech IMSS – http://www.imss.caltech.edu/

help/ssh

6.5 Example input format for waypoints

2 2

4 -1

2.2 3

1 1

4

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/stage_ros
http://wiki.ros.org/urg_node
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/rosbag
http://rtv.github.io/Stage/
http://kobuki.yujinrobot.com
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
http://cli.learncodethehardway.org/book/
http://cli.learncodethehardway.org/book/
http://www.imss.caltech.edu/help/ssh
http://www.imss.caltech.edu/help/ssh

	Objectives
	Logistics
	Background
	Steps
	Required
	Optional (Visualization)

	Deliverables
	References
	Kinematics for Wheeled Systems
	ROS, Stage, etc.
	Hardware
	Unix terminal
	Example input format for waypoints

