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Goals

• Introduce some motivating cooperative control problems

• Describe basic concepts in graph theory (review)

• Introduce matrices associated with graphs and related properties (spectra)

 Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of 
 Alex Fax (Northrop Grumman).
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Cooperative Control Applications

Transportation

• Air traffic control

• Intelligent transportation systems 

(ala California PATH project)

Military

• Distributed aperture imaging

• Battlespace management

Scientific

• Distributed aperture imaging

• Adaptive sensor networks (eg, 

Adaptive Ocean Sampling Network)

Commercial

• Building sensor networks (related)

Non-vehicle based applications

• Communication networks 

(routing, ...)

• Power grid, supply chain mgmt
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Cooperative Control Systems Framework

Agent dynamics

Vehicle “role”

•             encodes internal state + 

relationship to current task

• Transition 

Communications graph

• Encodes the system information flow

• Neighbor set 

Communications channel

• Communicated information can be lost, 

delayed, reordered; rate constraints

• ! = binary random process (packet loss)

Task

• Encode as finite horizon optimal control

• Assume task is coupled, env’t estimated

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update
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N i(x,α)

α ∈ A

α′ = r(x,α)

G

M

JGCD, 2007

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ Rq

yi
j [k] = γyi(tk − τj) tk+1 − tk > Tr

J =
∫ T

0
L(x,α, E(t), u) dt + V (x(T ),α(T )),

ui(x,α) = ui(xi,αi, y−i,α−i, Ê)

y−i = {yj1 , . . . , yjmi}
jk ∈ N i mi = |N i|

{gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

ui = ki(x,α)
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Information Flow in Vehicle Formations

Example: satellite formation

• Blue links represent sensed 

information

• Green links represent 

communicated information

Sensed information

• Local sensors can see some subset of nearby 
vehicles

•Assume small time delays, pos’n/vel info only

Communicated information

•Point to point communications (routing OK)

•Assume limited bandwidth, some time delay

•Advantage: can send more complex 
information

Topological features

• Information flow (sensed or communicated) 
represents a directed graph

•Cycles in graph ! information feedback loops

Question: How does topological structure of information flow affect
stability of the overall formation? 
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Goals:

• Describe basic concepts in graph theory (review)

• Introduce matrices associated with graphs and related properties (spec-
tra)

• Example: asymptotic concensus

Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of

Alex Fax (Northrop Grumman).
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Press, 1987.

1. Basic Definitions

Definition. A graph is a pair G = (V, E) that consists of a set of vertices V
and a set of edges E ⊆ V × V:

• Vertices: vi ∈ V

• Edges: eij = (vi, vj) ∈ E
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Example:

V = {1, 2, 3, 4, 5, 6}

E = {(1, 6), (2, 1), (2, 3), (2, 6), (6, 2), (3, 4),

(3, 6), (4, 3), (4, 5), (5, 1), (6, 1), (6, 2), (6, 4)}

Notation:

• Order of a graph = number of nodes: |V|

• vi and vj are adjacent if there exists e = (vi, vj)

• An adjacent node vj for a node vi is called a neighbor of vi

• Ni = set of all neighbors of vi

• G is complete if all nodes are adjacent

Undirected graphs

• A graph is undirected if eij ∈ E =⇒ eji ∈ E

• Degree of a node: deg(vi) := |Ni|

• A graph is regular (or k-regular) if all vertices of a graph have the same
degree k

Directed graphs (digraph)

• Out-degree of vi: degout = number of edges eij = (vi, vj)

• In-degree of vi: degin = number of edges eki = (vk, vi)

Balanced graphs

• A graph is balanced if out-degree = in-degree at each node

2. Connectedness of Graphs

Paths

• A path is a subgraph π = (V, Eπ) ⊂ G with distinct nodes V =
{v1, v2, . . . , vm} and

Eπ := {(v1, v2), (v2, v3), . . . , (vm−1, vm)}.

• The length of π is defined as |Eπ| = m − 1.
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• A cycle (or m-cycle) C = (V, EC) is a path (of length m) with an extra
edge (vm, v1) ∈ E .

• The distance between two nodes v and w is the length of the shortest
path between them.

Connectivity of undirected graphs

• An undirected graph G is called connected if there exists a path π
between any two distinct nodes of G.

• For a connected graph G, the length of the maximum distance between
two vertices is called the diameter of G.

• A graph with no cycles is called acyclic

• A tree is a connected acyclic graph

Connectivity of directed graphs

• A digraph is called strongly connected if there exists a directed path π
between any two distinct nodes of G.

• A digraph is called weakly connected if there exists an undirected path
between any two distinct nodes of G.

3. Matrices Associated with a Graph

• The adjacency matrix A = [aij ] ∈ Rn×n of a graph G of order n is
given by:

aij :=

{

1 if (vi, vj) ∈ E

0 otherwise

• The degree matrix of a graph as a diagonal n × n (n = |V|) matrix
∆ = diag{degout(vi)} with diagonal elements equal to the out-degree
of each node and zero everywhere else.

• The Laplacian matrix L of a graph is defined as

L = ∆ − A

.• The row sums of the Laplacian are all 0.

A =

2
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4. Periodic Graphics and Weighted Graphs

Periodic and acyclic graphs

• A graph with the property that the set of all cycle lengths has a com-
mon divisor k > 1 is called k-periodic.

• A graph without cycles is said to be acyclic.

Weighted graphs

• A weighted graph is graph (V, E) together with a map ϕ : E → R

that assigns a real number wij = ϕ(eij) called a weight to an edge
eij = (vi, vj) ∈ E .

• The set of all weights associated with E is denoted by W.

• A weighted graph can be represented as a triplet G = (V, E ,W).

Weighted Laplacian

• In some applications it is natural to “normalize” the Laplacian by the
outdegree

• L̃ := ∆−1L = I − Ã, where Ã = ∆−1A (weighted adjacency matrix).

5. Consensus protocols

Consider a collection of N agents that communicate along a set of undirected
links described by a graph G. Each agent has a state xi with initial value
xi(0) and together they wish to determine the average of the initial states
Ave(x(0)) = 1/N

∑

xi(0).

The agents implement the following consensus protocol:

ẋi =
∑

j∈Ni

(xj − xi) = −|Ni|(xi − Ave(xNi
))

which is equivalent to the dynamical system

ẋ = u u = −Lx.

Proposition 1. If the graph is connected, the state of the agents converges
to x∗

i = Ave(x(0)) exponentially fast.

• Proposition 1 implies that the spectra of L controls the stability (and
convergence) of the consensus protocol.

• To (partially) prove this theorem, we need to show that the eigenvalues
of L are all positive.
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6. Gershgorin Disk Theorem

Theorem 2 (Gershgorin Disk Theorem). Let A = [aij ] ∈ Rn×n and define
the deleted absolute row sums of A as

ri :=
n

∑

j=1,j "=i

|aij | (1)

Then all the eigenvalues of A are located in the union of n disks

G(A) :=
n
⋃

i=1

Gi(A), with Gi(A) := {z ∈ C : |z − aii| ≤ ri} (2)

Furthermore, if a union of k of these n disks forms a connected region that
is disjoint from all the remaining n − k disks, then there are precisely k
eigenvalues of A in this region.

Sketch of proof Let λ be an eigenvalue of A and let v be a correspond-
ing eigenvector. Choose i such that |vi| = maxj |vj > 0. Since v is an
eigenvector,

λvi =
∑

i

Aijvj =⇒ (λ − aii)vi =
∑

i"=j

Aijvj

Now divide by vi %= 0 and take the absolute value to obtain

|λ − aii| = |
∑

j "=i

aijvj | ≤
∑

j "=i

|aij | = ri

7. Properties of the Laplacian (1)

Proposition 3. Let L be the Laplacian matrix of a digraph G with maximum
node out–degree of dmax > 0. Then all the eigenvalues of A = −L are located
in a disk

B(G) := {s ∈ C : |s + dmax| ≤ dmax} (3)

that is located in the closed LHP of s-plane and is tangent to the imaginary
axis at s = 0.

Proposition 4. Let L̃ be the weighted Laplacian matrix of a digraph G.
Then all the eigenvalues of A = −L are located inside a disk of radius 1 that
is located in the closed LHP of s-plane and is tangent to the imaginary axis
at s = 0.
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Theorem 5 (Olfati-Saber). Let G = (V, E , W ) be a weighted digraph of
order n with Laplacian L. If G is strongly connected, then rank(L) = n− 1.

Remarks:

• Proof for the directed case is standard

• Proof for undirected case is available in Olfati-Saber & M, 2004 (IEEE
TAC)

• For directed graphs, need G to be strongly connected and converse is
not true.

8. Proof of Consensus Protocol

ẋ = −Lx L = ∆ − A

Note first that the subspaced spanned by 1 = (1, 1, . . . , 1)T is an invari-
ant subspace since L · 1 = 0 Assume that there are no other eigenvectors
with eigenvalue 0. Hence it suffices to look at the convergence on the com-
plementary subspace 1⊥.

Let δ be the disagreement vector

δ = x − Ave(x(0))1

and take the square of the norm of δ as a Lyapunov function candidate, i.e.
define

V (δ) = ‖δ‖2 = δT δ (4)

Differentiating V (δ) along the solution of δ̇ = −Lδ, we obtain

V̇ (δ) = −2δT Lδ < 0, ∀δ $= 0, (5)

where we have used the fact that G is connected and hence has only 1
zero eigenvalue (along 1). Thus, δ = 0 is globally asymptotically stable
and δ → 0 as t → +∞, i.e. x∗ = limt→+∞ x(t) = α01 because α(t) =
α0 = Ave(x(0)),∀t > 0. In other words, the average–consensus is globally
asymptotically achieved.

9. Perron-Frobenius Theory

Spectral radius:

• spec(L) = {λ1, . . . , λn} is called the spectrum of L.

• ρ(L) = |λn| = maxk |λk| is called the spectral radius of L
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Theorem 6 (Perron’s Theorem, 1907). If A ∈ Rn×n is a positive matrix
(A > 0), then

1. ρ(A) > 0;

2. r = ρ(A) is an eigenvalue of A;

3. There exists a positive vector x > 0 such that Ax = ρ(A)x;

4. |λ| < ρ(A) for every eigenvalue λ "= ρ(A) of A, i.e. ρ(A) is the unique
eigenvalue of maximum modulus; and

5. [ρ(A)−1A]m → R as m → +∞ where R = xyT , Ax = ρ(A)x, AT y =
ρ(A)y, x > 0, y > 0, and xT y = 1.

Theorem 7 (Perron’s Theorem for Non–Negative Matrices). If A ∈ Rn×n

is a non-negative matrix (A ≥ 0), then ρ(A) is an eigenvalue of A and there
is a non–negative vector x ≥ 0, x "= 0, such that Ax = ρ(A)x.

10. Irreducible Graphs and Matrices

Irreducibility

• A directed graph is irreducible if, given any two vertices, there exists
a path from the first vertex to the second. (Irreducible = strongly
connected)

• A matrix is irreducible if it is not similar to a block upper triangular
matrix via a permutation.

• A digraph is irreducible if and only if its adjacency matrix is irre-
ducible.

Theorem 8 (Frobenius). Let A ∈ Rn×n and suppose that A is irreducible
and non-negative. Then

1. ρ(A) > 0;

2. r = ρ(A) is an eigenvalue of A;

3. There is a positive vector x > 0 such that Ax = ρ(A)x;

4. r = ρ(A) is an algebraically simple eigenvalue of A; and

5. If A has h eigenvalues of modulus r, then these eigenvalues are all
distinct roots of λh − rh = 0.
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11. Spectra of the Laplacian

Properties of L

• If G is strongly connected, the zero eigenvalue of L is simple.

• If G is aperiodic, all nonzero eigenvalues lie in the interior of the Ger-
shgorin disk.

• If G is k-periodic, L has k evenly spaced eigenvalues on the boundary
of the Gershgorin disk.

12. Algebraic Connectivity

Theorem 9 (Variant of Courant-Fischer). Let A ∈ Rn×n be a Hermitian
matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and let w1 be the eigenvector of
A associated with the eigenvalue λ1. Then

λ2 = min
x #= 0, x ∈ Cn,

x⊥w1

x∗Ax

x∗x
= min

x∗x = 1,
x⊥w1

x∗Ax (6)

Remarks:

• λ2 is called the algebraic connectivity of L

• For an undirected graph with Laplacian L, the rate of convergence for
the consensus protocol is bounded by the second smallest eigenvalue
λ2

13. Cyclically Separable Graphs

Definition (Cyclic separability). A digraph G = (V, E) is cyclically sepa-
rable if and only if there exists a partition of the set of edges E = ∪nc

k=1
Ek

such that each partition Ek corresponds to either the edges of a cycle of the
graph, or a pair of directed edges ij and ji that constitute an undirected
edge. A graph that is not cyclically separable is called cyclically inseparable.

Lemma 10. Let L be the Laplacian matrix of a cyclically separable digraph
G and set u = −Lx, x ∈ Rn. Then

∑n
i=1 ui = 0,∀x ∈ Rn and 1 = (1, . . . , 1)T

is the left eigenvector of L.
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Proof. The proof follows from the fact that by definition of cyclic separabil-
ity. We have

−
n

∑

i=1

ui =
∑

ij∈E

(xj − xi) =
nc
∑

k=1

∑

ij∈Ek

(xj − xi) = 0

because the inner sum is zero over the edges of cycles and undirected edges
of the graph.

• Provides a “conservation” principle for average consensus

14. Consensus on Balanced Graphs

Let G = (V, E) be a digraph. We say G is balanced if and only if the in–degree
and out–degree of all nodes of G are equal, i.e.

degout(vi) = degin(vi), ∀vi ∈ V (7)

Theorem 11. A digraph is cyclically separable if and only if it is balanced.

Corollary 11.1. Consider a network of integrators with a directed informa-
tion flow G and nodes that apply the consensus protocol. Then, α = Ave(x)
is an invariant quantity if and only if G is balanced.

Remarks

• Balanced graphs generalized undirected graphs and retain many key
properties
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Consensus Protocols for Balanced Graphs

5
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Figure 4: Four examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c)
Gc, and (d) Gd satisfying.

as the number of the edges of the graph increases, algebraic connectivity (or λ2) increases,
and the settling time of the state trajectories decreases.

The case of a directed cycle of length 10, or Ga, has the highest over-shoot. In all four
cases, a consensus is asymptotically reached and the performance is improved as a function
of λ2(Ĝk) for k ∈ {a, b, c, d}.

In Figure 6(a), a finite automaton is shown with the set of states {Ga, Gb, Gc, Gd} rep-
resenting the discrete-states of a network with switching topology as a hybrid system. The
hybrid system starts at the discrete-state Gb and switches every T = 1 second to the next
state according to the state machine in Figure 6(a). The continuous-time state trajectories
and the group disagreement (i.e. ‖δ‖2) of the network are shown in Figure 6(b). Clearly, the
group disagreement is monotonically decreasing. One can observe that an average-consensus
is reached asymptotically. Moreover, the group disagreement vanishes exponentially fast.

Next, we present simulation results for the average-consensus problem with communica-
tion time-delay for a network with a topology shown in Figure 7. Figure 8 shows the state
trajectories of this network with communication time-delay τ for τ = 0, 0.5τmax, 0.7τmax, τmax

with τmax = π/2λmax(Ge) = 0.266. Here, the initial state is a random set of numbers with
zero-mean. Clearly, the agreement is achieved for the cases with τ < τmax in Figures 8(a),
(b), and (c). For the case with τ = τmax, synchronous oscillations are demonstrated in Figure
8(d). A third-order Pade approximation is used to model the time-delay as a finite-order
LTI system.

12 Conclusions

We provided the convergence analysis of a consensus protocol for a network of integrators
with directed information flow and fixed/switching topology. Our analysis relies on several
tools from algebraic graph theory, matrix theory, and control theory. We established a con-
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Figure 5: For examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c) Gc,
and (d) Gd satisfying.

nection between the performance of a linear consensus protocol and the Fiedler eigenvalue of
the mirror graph of a balanced digraph. This provides an extension of the notion of algebraic
connectivity of graphs to algebraic connectivity of balanced digraphs. A simple disagreement
function was introduced as a Lyapunov function for the group disagreement dynamics. This
was later used to provide a common Lyapunov function that allowed convergence analysis of
an agreement protocol for a network with switching topology. A commutative diagram was
given that shows the operations of taking Laplacian and symmetric part of a matrix commute
for adjacency matrix of balanced graphs. Balanced graphs turned out to be instrumental in
solving average-consensus problems.

For undirected networks with fixed topology, we gave sufficient and necessary condi-
tions for reaching an average-consensus in presence of communication time-delays. It was
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Other Uses of Consensus Protocols

Computation of other functions besides the average

• Can adopt the basic approach to compute max, min, etc

• Chandy/Charpentier: can compute superidempotent functions:

Basic idea: local conservation implies global conservation

• Can extend these cases to handle splitting and rejoining as well

Distributed Kalman filtering

• Maintain local estimates of global average and covariance

• Need to be careful about choosing rates of convergence

6

f(X ∪ Y ) = f(f(X) ∪ Y )

8 Reza Olfati-Saber

with a state (ei, qi) ∈ R2m, input ui, and output qi. This filter is used for
inverse-covariance consensus that calculates Ŝi column-wise for node i by
applying the filter on columns of H ′

iR
−1
i Hi as the inputs of node i. The

matrix version of this filter can take H ′
iR

−1
i Hi as the input.

Fig. 2 shows the architecture of each node of the sensor network for dis-
tributed Kalman filtering. Note that consensus filtering is performed with the
same frequency as Kalman filtering. This is a unique feature that completely
distinguishes our algorithm with some related work in [30, 33].

Sensor
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Covariance

Data

Low-Pass

Consensus Filter

Band-Pass

Consensus Filter

Micro

Kalman

Filter

(µKF)

Node i

x̂

(a) (b)

Fig. 2. Node and network architecture for distributed Kalman filtering: (a) archi-
tecture of consensus filters and µKF of a node and (b) communication patterns
between low-pass/band-pass consensus filters of neighboring nodes.

5 Simulation Results

In this section, we use our consensus filters jointly with the update equation
of the micro-Kalman filter of each node to obtain an estimate of the position
of a moving object in R2 that (approximately) goes in circles. The output
matrix is Hi = I2 and the state of the process dynamics is 2-dimensional
corresponding to the continuous-time system

ẋ = A0x + B0w
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Robustness

What happens if a single node “locks up”

Different types of robustness (Gupta, Langbort & M)

• Type I - node stops communicating (stopping failure)

• Type II - node communicates constant value

• Type III - node computes incorrect function (Byzantine failure)

Related ideas: delay margin for multi-hop models (Jin and M)

• Improve consensus rate through multi-hop, but create sensitivity to communcations 
delay

• Single node can change entire
value of the consenus

• Desired effect for “robust”
behavior: "xI = #/N

x1(0) = 4

x2(0) = 9

x3(0) = 6 x4(t) = 0

X5(t) = 6

x6(t) = 5

Gupta, Langbort and M
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Summary

Graphs

• Directed, undirected, connected, strongly complete

• Cyclic versus acyclic; irreducible, balanced

Graph Laplacian

• L = ! - A

• Spectral properties related to connectivity of graph

• # zero eigenvalues = # strongly connected components

• Second largest nonzero eigenvalue ~ weak links

Spectral Properties of Graphs

• Gershgorin’s disk theorem

• Perron-Frobenius theory

Examples

• Consensus problems, distributed computing

• Distributed control (coming up next...)
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