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6raph Theory and Consensus

Richard M. Murray
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16 March 2009

Goals
* Introduce some motivating cooperative control problems
» Describe basic concepts in graph theory (review)
¢ Introduce matrices associated with graphs and related properties (spectra)
Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of
Alex Fax (Northrop Grumman).
References
* R. Diestel, Graph Theory. Springer-Verlag, 2000.
* C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
* R.A. Horn and C. R. Johnson, Matrix Analysis. Cambridge Univ Press,1987.

* R. Olfati-Saber and M, “Consensus Problems in Networks of Agents”, IEEE
Transactions on Automatic Control, 2004.

Cooperative Control Applications

- Transportation
e Air traffic control

o Intelligent transportation systems
(ala California PATH project)

Military
® Distributed aperture imaging
e Battlespace management

® Distributed aperture imaging

e Adaptive sensor networks (eg,
Adaptive Ocean Sampling Network)

Commercial
e Building sensor networks (related)

Non-vehicle based applications

o Communication networks
(routing, ...)

® Power grid, supply chain mgmt
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Cooperative Control Systems Framework

Agent dynamics
it = fi(z'u') 2" e R u' € R™
y'=h'(z") Y eR?

Vehicle “role”

e a € A encodes internal state +
relationship to current task

e Transition o/ = r(z, )

Communications graph G
e Encodes the system information flow
e Neighbor set N(z, a)

Communications channel

e Communicated information can be lost,
delayed, reordered; rate constraints

y;[k] =y (te — 75) trpr —te > T

e y = binary random process (packet loss)

ISAT, Feb 09

Task
e Encode as finite horizon optimal control

T
7= [ Moo, &@)w)dt+ V(D) a(T))
0
e Assume task is coupled, env’'t estimated

Strategy
e Control action for individual agents

u' = k'(z,a) {gj-(:v,a) : T;(faa)}

il {r;‘-(x,a>

unchanged otherwise.

g(x,a) = true

Decentralized strategy
u'(z,0) = u'(@’, 0’y a7 €)
y =y
Ik e N m; = |NZ|

e Similar structure for role update
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Information Flow in Vehicle Formations

Example: satellite formation

® Blue links represent sensed
information

e Green links represent
communicated information

Sensed information

« Local sensors can see some subset of nearby
vehicles

« Assume small time delays, pos’n/vel info only

Communicated information
« Point to point communications (routing OK)
* Assume limited bandwidth, some time delay

« Advantage: can send more complex
information

Topological features

« Information flow (sensed or communicated)
represents a directed graph

« Cycles in graph = information feedback loops

Question: How does topological structure of information flow affect
stability of the overall formation?
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A Primer on Graph Theory

Richard M. Murray

Control and Dynamical Systems
California Institute of Technology

December 2007

Goals:

e Describe basic concepts in graph theory (review)

e Introduce matrices associated with graphs and related properties (spec-
tra)

e Example: asymptotic concensus

Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of
Alex Fax (Northrop Grumman).

References:

1. R. Diestel, Graph Theory. Springer-Verlag, 2000.
2. C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.

3. R. A. Horn and C. R. Johnson, Matriz Analysis. Cambridge Univ
Press, 1987.

1. Basic Definitions

Definition. A graph is a pair G = (V, £) that consists of a set of vertices V
and a set of edges £ CV x V:

e Vertices: v; € V

o Edges: e;; = (v5,v;) € €



Example:

V:{1,2,3,4,5,6} 2
&= {(176)7 (2, 1)7 (273)7 (2,6), (672)7 (374)7 \/\ 6

(3,6),(4,3),(4,5),(5,1),(6,1),(6,2),(6,4)}
Notation: 3 4

e Order of a graph = number of nodes: |V|

e v; and v; are adjacent if there exists e = (v;, v;)

e An adjacent node v; for a node v; is called a neighbor of v;
e N; = set of all neighbors of v;

e G is complete if all nodes are adjacent
Undirected graphs

e A graph is undirected if e;; € £ = ej; € £
e Degree of a node: deg(v;) := ||

e A graph is regular (or k-regular) if all vertices of a graph have the same
degree k

Directed graphs (digraph)

e Out-degree of v;: deg,,; = number of edges e;; = (v;, v;)

e In-degree of v;: deg;, = number of edges e; = (v, v;)
Balanced graphs

e A graph is balanced if out-degree = in-degree at each node

2. Connectedness of Graphs

Paths
e A path is a subgraph 7 = (V,&;) C G with distinct nodes V =
{vi,v9,..., v} and
Er = {(v1,v2), (v2,03), .-, (Um—1,m) }.

e The length of 7 is defined as |E;| =m — 1.



e A cycle (or m-cycle) C = (V,E¢) is a path (of length m) with an extra
edge (vpm,v1) € E.

e The distance between two nodes v and w is the length of the shortest
path between them.

Connectivity of undirected graphs

e An undirected graph G is called connected if there exists a path =«
between any two distinct nodes of G.

e For a connected graph G, the length of the maximum distance between
two vertices is called the diameter of G.

e A graph with no cycles is called acyclic

e A tree is a connected acyclic graph

Connectivity of directed graphs

e A digraph is called strongly connected if there exists a directed path 7
between any two distinct nodes of G.

e A digraph is called weakly connected if there exists an undirected path
between any two distinct nodes of G.

3. Matrices Associated with a Graph

e The adjacency matriz A = [a;;] € R™*™ of a graph G of order n is
given by:

0 otherwise

1 if (v,v5) €&
ai :_{ if (v, v;) €

e The degree matriz of a graph as a diagonal n x n (n = |V|) matrix
A = diag{deg,(v;)} with diagonal elements equal to the out-degree
of each node and zero everywhere else.

e The Laplacian matriz L of a graph is defined as
L=A-A

e The row sums of the Laplacian are all 0.

0 0 0 0 01 1 0 0 0 0 -1
1 01 0 0 1 -1 3 -1 0 0 -1
A— 0 0 01 01 I — 0 0 2 -1 0 -1
0 01 010 0 o -1 2 -1 0
10 0 0 0 O -1 0 0 0 1 0
110 1 0 0 -1 -1 0 -1 0 3



4. Periodic Graphics and Weighted Graphs

Periodic and acyclic graphs

e A graph with the property that the set of all cycle lengths has a com-
mon divisor k£ > 1 is called k-periodic.

e A graph without cycles is said to be acyclic.

Weighted graphs

o A weighted graph is graph (V,&) together with a map ¢ : € — R
that assigns a real number w;; = ¢(e;;) called a weight to an edge
€ij = (Z)Z',’Uj) eé.

e The set of all weights associated with £ is denoted by W.

e A weighted graph can be represented as a triplet G = (V, &, W).

Weighted Laplacian
e In some applications it is natural to “normalize” the Laplacian by the

outdegree

o L:=A"'L=17—A, where A= A~'A (weighted adjacency matrix).

5. Consensus protocols

Consider a collection of N agents that communicate along a set of undirected
links described by a graph G. Each agent has a state x; with initial value
z;(0) and together they wish to determine the average of the initial states

Ave(z(0)) = 1/N Y z;(0).
The agents implement the following consensus protocol:
=y () —x;) = —|Ni|(x; — Ave(an;))
JEN;
which is equivalent to the dynamical system
T=1u u=—Lx.

Proposition 1. If the graph is connected, the state of the agents converges
to x7 = Ave(x(0)) exponentially fast.

e Proposition 1 implies that the spectra of L controls the stability (and
convergence) of the consensus protocol.

e To (partially) prove this theorem, we need to show that the eigenvalues
of L are all positive.



6. Gershgorin Disk Theorem

Theorem 2 (Gershgorin Disk Theorem). Let A = [a;;] € R™*™ and define
the deleted absolute row sums of A as

n
rii= Yy agl (1)
=1
Then all the eigenvalues of A are located in the union of n disks

G(A) = Gi(A), with Gi(A) :={z € C: |z — ay| < r;} (2)
i=1
Furthermore, if a union of k of these n disks forms a connected region that
1s disjoint from all the remaining n — k disks, then there are precisely k
etgenvalues of A in this region.

Sketch of proof Let A\ be an eigenvalue of A and let v be a correspond-
ing eigenvector. Choose i such that |v;] = max;|v; > 0. Since v is an
eigenvector,

A\v; = Z Aijvj == ()\ — an‘)'l}i = Z Aij’l)j
i i#]
Now divide by v; # 0 and take the absolute value to obtain

A —ai| =) _ayvi| < ) laij| =1
JVj J

j#i j#i
7. Properties of the Laplacian (1)

Proposition 3. Let L be the Laplacian matriz of a digraph G with mazimum
node out—degree of dpyar > 0. Then all the eigenvalues of A = —L are located
in a disk

B(G) == {s € C: |5+ dmaz| < dmac} (3)

that is located in the closed LHP of s-plane and is tangent to the imaginary
azis at s = 0.

Proposition 4. Let L be the weighted Laplacian matriz of a digraph G.
Then all the eigenvalues of A = —L are located inside a disk of radius 1 that
1s located in the closed LHP of s-plane and is tangent to the imaginary azis
at s = 0.



Theorem 5 (Olfati-Saber). Let G = (V,E, W) be a weighted digraph of
order n with Laplacian L. If G is strongly connected, then rank(L) =n — 1.
Remarks:
e Proof for the directed case is standard

e Proof for undirected case is available in Olfati-Saber & M, 2004 (IEEE
TAC)

e For directed graphs, need G to be strongly connected and converse is
not true.

8. Proof of Consensus Protocol

Note first that the subspaced spanned by 1 = (1,1,...,1)7 is an invari-
ant subspace since L -1 = 0 Assume that there are no other eigenvectors
with eigenvalue 0. Hence it suffices to look at the convergence on the com-
plementary subspace 1.

Let § be the disagreement vector

0=x— Ave(z(0))1

and take the square of the norm of § as a Lyapunov function candidate, i.e.
define
V(3) = [|6]* = "6 (4)

Differentiating V'(§) along the solution of § = —Ld, we obtain
V(0) =-26TLé <0, V&+#0, (5)

where we have used the fact that G is connected and hence has only 1
zero eigenvalue (along 1). Thus, § = 0 is globally asymptotically stable
and § — 0 as t — +oo, ie. " = limy4ox(t) = apl because a(t) =
ag = Ave(z(0)),Vt > 0. In other words, the average—consensus is globally
asymptotically achieved. O

9. Perron-Frobenius Theory

Spectral radius:

e spec(L) = {A1,..., A\, } is called the spectrum of L.
e p(L) = |A\y| = maxy |\g| is called the spectral radius of L



Theorem 6 (Perron’s Theorem, 1907). If A € R™ " is a positive matriz

(A>0), then
1. p(A) > 0;
2. r=p(A) is an eigenvalue of A;
3. There exists a positive vector x > 0 such that Az = p(A)x;
4. |A| < p(A) for every eigenvalue X # p(A) of A, i.e. p(A) is the unique

etgenvalue of maximum modulus; and

[p(A)TLA]™ — R as m — +oo where R = xy?, Az = p(A)z, ATy =
p(Ay, >0,y >0, and z7y = 1.

Theorem 7 (Perron’s Theorem for Non-Negative Matrices). If A € R™"*"
is a non-negative matriz (A > 0), then p(A) is an eigenvalue of A and there
is a non-negative vector x > 0, x # 0, such that Az = p(A)z.

10.

Irreducible Graphs and Matrices

Irreducibility

e A directed graph is irreducible if, given any two vertices, there exists

a path from the first vertex to the second. (Irreducible = strongly
connected)

e A matrix is irreducible if it is not similar to a block upper triangular

matrix via a permutation.

e A digraph is irreducible if and only if its adjacency matrix is irre-

ducible.

Theorem 8 (Frobenius). Let A € R™™ and suppose that A is irreducible
and non-negative. Then

SR A

p(A) > 0;

r = p(A) is an eigenvalue of A;

There is a positive vector x > 0 such that Ax = p(A)x;
r = p(A) is an algebraically simple eigenvalue of A; and

If A has h eigenvalues of modulus r, then these eigenvalues are all
distinct roots of N — " = 0.



11. Spectra of the Laplacian
Properties of L

e If G is strongly connected, the zero eigenvalue of L is simple.

e If G is aperiodic, all nonzero eigenvalues lie in the interior of the Ger-
shgorin disk.

e If G is k-periodic, L has k evenly spaced eigenvalues on the boundary
of the Gershgorin disk.

12. Algebraic Connectivity

Theorem 9 (Variant of Courant-Fischer). Let A € R™ " be a Hermitian
matriz with eigenvalues A\ < Ay < --- <\, and let wy be the eigenvector of
A associated with the eigenvalue A\1. Then

*A
Ag = min i - Y= min oAz (6)
r#0,xeC T r*r =1,
rlw; xrlw;

Remarks:
e )\ is called the algebraic connectivity of L

e For an undirected graph with Laplacian L, the rate of convergence for
the consensus protocol is bounded by the second smallest eigenvalue

A2

13. Cyclically Separable Graphs

Definition (Cyclic separability). A digraph G = (V,€&) is cyclically sepa-
rable if and only if there exists a partition of the set of edges £ = U<, &
such that each partition & corresponds to either the edges of a cycle of the
graph, or a pair of directed edges 75 and ji that constitute an undirected
edge. A graph that is not cyclically separable is called cyclically inseparable.

Lemma 10. Let L be the Laplacian matriz of a cyclically separable digraph
G and setu = —Lz,x € R". Then > » ju; =0,V € R" and1 = (1,...,1)T
1s the left eigenvector of L.



Proof. The proof follows from the fact that by definition of cyclic separabil-
ity. We have

n e
=D ui=) (wj—w) = > (¢j—z)=0
i=1 ijeE k=1ij€Ek

because the inner sum is zero over the edges of cycles and undirected edges
of the graph. O

e Provides a “conservation” principle for average consensus

14. Consensus on Balanced Graphs

Let G = (V, &) be a digraph. We say G is balanced if and only if the in—degree
and out—degree of all nodes of G are equal, i.e.

degout (1),) = degin(vi)a Yv;, € V (7)

Theorem 11. A digraph is cyclically separable if and only if it is balanced.

Corollary 11.1. Consider a network of integrators with a directed informa-
tion flow G and nodes that apply the consensus protocol. Then, o = Ave(x)
1 an tnvariant quantity if and only if G is balanced.

Remarks

e Balanced graphs generalized undirected graphs and retain many key
properties



Consensus Protocols for Balanced Graphs
1 2 3 4 5 1 2 3 4 5
10 9 8 7 6 10 9 8 7 6

(a) (b)

Algebraic Connectivity=0.191

Algebraic Connectivity=0.205

o~
o [
3 2 0= ——
© © >
> > | ——
8 8
2 8-10
-20 . . —20 . .
0 5 10 15 0 5 10 15
time( sec) time( sec)
300 300
€ €
£ 200 £ 200
o o
o 2
g g
§100 &100
o o
0 L 0
0 5 10 15 0 5 10 15
time( sec) time( sec)
(a) (b)
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Other Uses of Consensus Protocols

Computation of other functions besides the average
e Can adopt the basic approach to compute max, min, etc
e Chandy/Charpentier: can compute superidempotent functions:

JXUY)=ff(X)uY)
Basic idea: local conservation implies global conservation
e Can extend these cases to handle splitting and rejoining as well

Distributed Kalman filtering
e Maintain local estimates of global average and covariance
® Need to be careful about choosing rates of convergence

Nndei'____l __________ | Nodei'____l __________ |

! 1 ! 1
Sensor | | Sensor | |
Data 1 Low-Pass | Data 1 Low-Pass |
1 C Filter . 1 C Filter .
1 Micro 1 2 1 Micro 2
| Kalman 1 X | Kalman 1 X
1 Filter —> 1 Filter —>
| KF 1 | 1
Covariance ( ) Covariance (KE)
Band-Pass I Band-Pass |
Data . Data 3
Filter I » C Filter I
! 1 ! 1
! 1 ! 1
! 1 ! 1

____T __________ ____T __________
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Gupta, Langbort and M
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Robustness

What happens if a single node “locks up”

x©=4 @——@ X075

* Single node can change entire
value of the consenus
%0)=9 @ @ X(H=6 * Desired effect for “robust”

\ / behavior: Ax; = 8/N

x0)=6 @—0@ x@t)=0

Different types of robustness (Gupta, Langbort & M)
e Type | - node stops communicating (stopping failure)
e Type Il - node communicates constant value
e Type lll - node computes incorrect function (Byzantine failure)

Related ideas: delay margin for multi-hop models (Jin and M)
® Improve consensus rate through multi-hop, but create sensitivity to communcations

delay
EECI, Mar 09 Richard M. Murray, Caltech CDS 7
Summary
Graphs
e Directed, undirected, connected, strongly complete ! 2

e Cyclic versus acyclic; irreducible, balanced

Graph Laplacian

e L=A-A
e Spectral properties related to connectivity of graph W Y
e # zero eigenvalues = # strongly connected components 5. N 4
e Second largest nonzero eigenvalue ~ weak links
Spectral Properties of Graphs [ T LA
e Gershgorin’s disk theorem 2 2
, 0 1 0 0 -1 0
® Perron-Frobenius theory
11 1
0 0 1 -—— —= -
Examples - 3 3 3
e Consensus problems, distributed computing 6 0 o 1 -1 0
e Distributed control (coming up next...) _; 0 0 _% 1 _;
0o -1 o o -1
| 2 2
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