
CDS 270-2, 10 Apr 06 R. M. Murray, Caltech CDS 1

CDS 270-2: Lecture 3-1

Real-Time Trajectory Generation

Richard M. Murray

10 April 2006

Goals:

• Introduce two degree of freedom design for motion control systems

• Describe how to use flatness for real-time motion planning using NTG

• Give examples of implementation on Caltech ducted fan, satellite formations

Reading:

• “A New Computational Approach to Real-Time Trajectory Generation for

Constrained Mechanical Systems”, M. B. Milam, K. Mushambi and R. M.

Murray. Conference on Decision and Control, 2000.

• “Inversion Based Constrained Trajectory Optimization”, N. Petit, M. B.

Milam and R. M. Murray.  IFAC Symposium on Nonlinear Control Systems

Design (NOLCOS), 2001.
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Caltech Ducted Fan
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Real-Time Trajectory Generation Using Flatness

Approach: Two Degree of Freedom

Design

• Use online trajectory generation to

construct feasible trajectories

• Use linear control for local

performance

• For many systems, dynamics are diff-
erentially flat  reduce dynamic sys-

tem to algebraic equivalent and gen-

erate feasible trajectories in real time
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Trajectory Generation Using Differential Flatness

• Use basis functions to parameterize output  linear problem in terms of coefficients
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Complicated (algebraic) constraints
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Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

subject to

If system is flat, once again we get an algebraic problem:

• Constraints hold at all times  potentially over-constrained optimization

• Numerically solve by discretizing time (collocation)

• Input constraints

• State constraints
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Finite parameter optimization problem
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NTG: Nonlinear Trajectory Generation

Flatness-based optimal control package

• B-spline representation of (partially) flat outputs

• Collocation based optimization approach

• Built on NPSOL optimization pkg (requires license)

• Warm start capability for receding horizon control

Solves general nonlinear optimization problem

• Assumes x and u are given in terms of (partially) flat outputs

• Constraints are enforced at a user-specified set of collocation points

• Gives approximate solution; need to use w/ feedback to ensure robustness

(2 DOF)

Petit, Milam, Murray

NOLCOS, 2001

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
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collocation point

collocation point

Trajectory Generation Using Splines for Flat Outputs

Rewrite flat outputs in terms of splines

Evaluate constrained optimization at collocation points:

Bi,kj  = basis functions

  Ci
j  = coefficients

   zi  = flat outputs
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Application: Caltech Ducted Fan

Flight Dynamics

Trajectory Generation Implementation

• System is approximately flat, even with

aerodynamic forces

• More efficient to over-parameterize the
outputs; use z = (x, y, )

• Input constraints: max thrust, flap limits,

flap rates
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Implementation using NTG Software Library

Features

• Handles constraints

• Very fast (real-time),

especially from warm

start

• Good convergence

Weaknesses

• No convergence proofs

• Misses constraints

between collocation

points

• Doesn’t exploit

mechanical structure

(except through flatness)

Planar Ducted Fan: Warm Starts

Milam, Mushambi, M

2000 CDC

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
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Example 1: Trajectory Generation for the Ducted Fan

Trajectory Generation Task: point to point motion avoiding obstacles

• Use differential flatness to represent trajectories satisfying dynamics

• Use B-splines to parameterize trajectories

• Solve constrained optimization to avoid obstacles, satisfy thrust limits

Caltech Ducted Fan

• Ducted fan engine

with vectored thrust

• Airfoil to provide lift

in forward flight

mode

• Design to emulate

longitudinal flight

dynamics

• Control via dSPace-

based real-time

controller
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NTG Convergence Properties

Numerical Studies

using Caltech Ducted

Fan

• 6461 test cases

• 500 initial guess for

spline coefficients

• Total of > 3M runs

• Count # of cases that

converge for given #

of initial guesses

• Comparison between

quasi-collocation (x,
y, ) and full

collocation (states

and inputs)

Quasi-collocation Collocation
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Trajectory Generation for Non-Flat Systems

If system is not fully flat, can still apply NTG

When system is not flat, use quasi-collocation

• Choose output y=h(x,u) that can be used to compute the full state and input

• Remaining dynamics are treated as constraints for trajectory generation

• Example: chain of integrators

Can also do full collocation (treat all dynamics as constraints)
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Effect of Defect on Computation Time

Defect as a measure of flatness

• Defect = number of remaining

differential equations

• Defect 0  differentially flat

Sample problem: 5 states, 1 input

• x1 is possible flat output

• Can choose other outputs to get

systems with nonzero defect

• 200 runs per case, with random

initial guess

Computation time related to defect

through power law

• SQP scales cublicly  minimize

the number of free variables
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Petit, Milam, Murray

NOLCOS, 2001
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Example 2: Satellite Formation Control

Goal: reconfigure cluster of satellites using minimum fuel

Dynamics given by Hill’s equations (fully actuated  flat)

Milam, Petit, Murray

AIAA GNC, 2001
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Satellite Formation Results

Station-keeping optimization

• Maintain a given area between the

satellites (for good imaging) while

minimizing the amount of fuel

• Idea: exploit natural dynamics of

orbital equations as much as

possible

• Input constraints: V < 20 m/s/year

Results

• Use NTG to optimize over 60 orbits

(~3 days), then repeat

• Results: at 45  inclination, obtain

10.4 m/s/year

Projected area of

satellites

100 m2
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Example 3: MVWT Control Design

Control design technique

1. LQR design of state space controller K
around reference velocity

2. Choose P, Q, R using Kalman’s formula

3. Implement as a receding horizon control
with input and state space constraints

• RHC controller respects state space
constraint

     LQR control law     

     RHC control law     

Initial condition

Constraint (post)

Reference
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Summary: Real-Time Trajectory Generation

Flatness is a key property for efficient motion planning

• Allows conversion of dynamics into algebra  much faster algorithms

NTG software package implements required calculations

• Allows solution of general constrained optimization, w/ parameterized outputs

• Gives approximate results  need to use in feedback context (not open loop)

Growing collection of applications

• Caltech ducted fan, satellite formation control

• Underwater vehicles, wheeled mobile robots, RoboFlag, Alice, …
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Homework and Project Ideas

Homework

• Download NTG and implement the point to point motion control problem for

Alice or a RoboFlag vehicle.

Project ideas:

• For multi-vehicle applications, need

to distribute the computation across

multiple computers

• Use spread to implement a distributed

trajectory generation capability


