
CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 1

CDS 270-2: Lecture 1-2

Case Study: Alice

Richard M. Murray

29 March 2006

Goals:

• Provide detailed overview of a a model networked control system

• Introduce NCS features to be addressed in upcoming lectures

Reading:

• “Alice: An Information-Rich Autonomous Vehicle for High-Speed Desert

Navigation”, Cremean et al. Journal of Field Robotics, 2005 (submitted)

• http://gc.caltech.edu/wiki - online documentation for Alice

! Alice Documentation - primary page for documentation links

! 2005 SURF - project reports for individual components



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 2

Alice Overview

Team Caltech

• 50 students worked on Alice over 1 year

• Course credit through CS/EE/ME 75

• Summer team: 20 SURF students + 6

graduated seniors + 4 work study + 4

grads + 2 faculty + 6 volunteers (= ~40)

Alice

• 2005 Ford E-350 Van

• Sportsmobile 4x4 offroad package

• 5 cameras: 2 stereo pairs + roadfinding

• 5 LADARs: long, med*2, short, bumper

• 2 GPS units + 1 IMU (LN 200)

• 4 seats w/

computer

workstations

Short range

stereo

Long range

stereo

LADAR (4)

Alice



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 3

Alice’s Architecture

Computing

• 6 Dell 750 PowerEdge Servers (P4, 3GHz)

• 1 IBM Quad Core AMD64 (fast!)

• 1 Gb/s switched ethernet

Software

• 15 individual programs with ~50 threads of

execution

• FusionMapper: integrate all sensor data into

a speed map for planning

• PlannerModule: optimization-based planning

over a 10-20 second horizon



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 4

Communication Management: Spread

Modular architecture

• Each block represents one or more

processes (programs) communicating

via network (packets)

• Processes linked to specific hardware

run on dedicated computers; otherwise

can run on any computer

• Each process can have multiple

threads of execution (multi-tasking)

Communication Groups

• Modules subscribe to “groups”; receive

all messages to that group

• Multiple levels of reliability/causality:

unreliable, guaranteed, causal

• Use individual “keys” to allow multiple

users to avoid conflicts (especially

useful for simuilations)

• Graphical user interface (GUI)

subscribes to all messages

1

22 3 4 5

6 7 7 1



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 5

Path Follower/Actuation

Vehicle Actuation: adrive

• Accept actuation commands from

control algorithm; command actuators

• Check proper vehicle operation; pause

vehicle on error (and signal superCon)

• Broadcast actuator state

Trajectory Tracking: pathFollower

• Accept desired trajectory from planner

• Read vehicle state via broadcast

• PID controller to generate actuation

commands

• Modes: normal, pause, reverse

Adrive

• HW: steering, throttle, brake, ignition,

transmission, engine diagnostics -

serial port interfaces

• In: normalized actuation commands,

engine diagnostics (OBD II)

• Out: actuator values and engine state

• Independent threads for each actuator

• “Interlock” logic to ensure safety

PathFollower

• HW: none

• In: desired trajectory, mode (fwd/rev)

• Out: actuation commands

• PID controller, with trajectory storage

and “reverse” capability



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 6

State Estimation

State estimation: astate

• Broadcast current vehicle state to all

modules that require it (many)

• Timing of state signal is critical - use to

calibrate sensor readings

• Quality of state estimate is critical: use

to place terrain features in global map

• Issue: GPS jumps

! Can get 20-100 cm jumps as

satellites change positions

! Maintain continuity of state at same

time as insuring best accuracy

Astate

• HW: 2 GPS units (2-10 Hz update), 1

inertial measurement unit (gryo, accel

@ 400 Hz)

• In: actuator commands, actuator

values, engine state

• Out: time-tagged position, orientation,

velocities, accelerations

• Use vehicle wheel speed + brake

command/position to check if at rest

GPS

GPS

IMU

Kalman

Filter

• Actuator

state

• Engine 

state

Adrive

Vehicle position, orientation,

velocities, accelerations



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 7

Sensor
Elevation

Map

Speed

Map

FusionSensor
Elevation

Map

Speed

Map

Sensor
Elevation

Map

Speed

Map

Terrain Estimation

Sensor processing

• Construct local elevation based on

measurements and state estimate

• Compute speed based on gradients

Sensor fusion

• Combine individual speed maps

• Process “missing data” cells

Road finding

• Identify regions with road features

• Increase allowable speed along roads

LadarFeeder, StereoFeeder

• HW: LADAR (serial), stereo (firewire)

• In: Vehicle state

• Out: Speed map (deltas)

• Multiple computers to maintain speed

FusionMapper

• In: Sensor speed maps (deltas)

• Output: fused speed map

• Run on quadcore AMD64



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 8

Sensor Fusion and Cost Map Processing

Short range LADAR

Mid-range LADAR Long-range LADAR

Combined speed



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 9

Path Planner

Trajectory Generation: plannerModule

• Use speed map to plan trajectory that

maximizes distance traveled

• Two phase planner: first stage uses

simple grid to seed optimization

• Exploit differential flatness for speed

PlannerModule

• HW: none

• In: speed maps, vehicle state

• Out: desired trajectory

• Algorithm runs on quadcore AMD64 at

approx. 5 Hz



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 10

Supervisory Control

Supervisory Control

• Control operation of other modules

• Always maintain forward progress

SuperCon

• Input: read all published information

• Output: targetted mode messages

• Reason about different situations and

control operation of other modules

based on current strategy

• Make heavy use of networked architec-

ture, especially communication groups



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 11

SuperCon Logic

No Forward Progress (NFP)

Scenario



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 12

SuperCon Usage (NQE Run 1)

Heavy usage of superCon modes during “typical” operations

• Vehicle must be able to operate in “degraded” mode

C
o
n
ti
n
g
e
n
c
y
 S

e
t



CDS 270-2, 29 Mar 06 R. M. Murray, Caltech CDS 13

Architecture Summary

Additional modules/features

• GUI: show system states in real-time

• Sensor logging (“timber”): log and

playback raw sensor data

• Network logging (“author, logplayer”):

capture and playback all network traffic

• Simulator: read actuation commands

and generate (simulated) state data

• Runlevels: automatically restart

crashed modules


