CDS140a
Nonlinear Systems: Local Theory
Lecture 3

1 The Stable Manifold Theorem
i = f(x) (1)
&= Df(xo)x (2)

We assume that the equilibrium point z is located at the origin.

1.1 Some Examples

1.1.1 Example 1

Consider The linear system
T, = —x1
To = 219

Clearly we have z1(t) = aje™! and z2(t) = age?, with stable subspace E* = span{(1,0)} and unstable
subspace E" = span{(0,1)}. So lim; , ¢:(a) = 0 only if a € R®. Consider a small perturbation of this
linear system:

il = —I

To = 2.%‘2—5631‘:13

The solution is given by z1(t) = are™" and z5(t) = aze® + afe (e”

B 2t) = 3,3t
Clearly lim;_,, ¢¢(a) = 0 only if ay = ea$. Indeed we can show that the set

= (az —ea?) €*" + eafe

S = {r € R?|zy = ex?}

is invariant with respect to the flow. It easy to see that as = ea$ leads to

—t —t
ae ae
S) — — €S
() (az — ea:{’) e?t + eaje 3t ] [ eaje 3t }

So S is an invariant set (curve), and the flow on this curve is stable. So it seems that S is some nonlinear
analog of E°. Furthermore, notice that S is tangent to the stable subspace of the linear system, and as
€ — 0, the curve S becomes E*.

1.1.2 Example 2 (Perko 2.7 Example 1)_

Consider
rn = —I
Ty = —I9+ x%
T3 = I3+ x?
which we can rewrite as
-1 0 0 0
T = 0 -1 0 |a+ | 22
0 0 1 x%



The flow is given by

are?

$:(S) = | aze™" + a? (e7t +e?)
2
aset + a31 (et _ 672:5)
where a = (a1, az,a3) = 2(0). Clearly lim; ., ¢:(a) = 0 only if a3 = —a?/3. So

S ={acR3az = —al/3}

and similarly
U={acR¥a; =ay=0}.

Again it seems that S is some nonlinear analog of E*and U is some nonlinear analog of E* . Furthermore,
notice that S is tangent to the stable subspace of the linear system. We call S the stable manifold, and U
the unstable manifold.

We are going to see how we can compute S and U in general.

1.2 Manifolds and stable manifold theorem

But first here is a “working” definition of a k-dimentional differential manifold. For more precise definition,
there is a small section in the book, and CDS202 deals with differentiable manifolds in great details.

In this class, by k-dimentional differential manifold (or manifold of class C™) we mean any “smooth”
(of order C™) k-dimensional surface in an n-dimensional space.

For example S = {a € R®|a3 = —a?/3} is 2-dimensional differentiable manifold.

Theorem (The Stable Manifold Theorem): Let E be anopen subset of R™ containing the origin,
let f € C1(E), and let ¢; be the flow of the non-linear system (1). Suppose that f(0) = 0 and that D f(0)
has k eigenvalues with negative real part and n — k eigenvalues with positive real part. Then there exists a
k—dimensional manifold S tangent to the stable subspace E®of the linear system (2)at 0 such that for all
t >0, ¢(S) C S and for all zg € S,

Jim () = 0;

and there exists an n — k differentiable manifold U tanget to the unstable subspace E* of (2) at 0 such that
for all t <0, ¢+(U) C U and for all ¢ € U,

t—l>u;noo (bt(x()) =0

Note: As in the examples, since f € C'(E) and f(0) = 0, then system (1) can be writen as
&= Az + F(x)

where A = Df(0), F(z) = f(z) — Az, F € CY(E), F(0) =0 and DF(0) = 0.
Furthermore, we want to separate the stable and unstable parts of the matrix , i.e., choose a matrix C'

such that
P 0
—_ -1 —_
pecrac=[ 2]
where the eigenvalues of the k x k matrix P have negative real part, and the eigenvalues of the (n—k) x (n—k)
matrix @ have positive real part. The transformed system (y = C~'x) has the form

y = By+C'F(Cy)
y = By+Gy) (3)



1.2.1 Calculating the stable manifold (Perko Method):

Perko shows that the solutions of the integral equation

t oo
u(t,a) = U(t)aJr/ Ut — s)G(u(s,a))ds f/ V(t — s)G(u(s,a))ds
0 t
satisfy (3) and lim;_, u(t,a) = 0. Furthermore it gives an iterative scheme for computing the solution:
u(t,a) =

0
utV(ta) = U(t)a+/tU(t—s)G(u(’“)(s,a))ds—/oo V(t —s)Gu™(s,a))ds
0 t

e Remark Here is some intuition on why the particular integral equation is chosen. We basically want
to remove the parts that blow up as t — co. In general, the solution of this system satisfies

Pt 0 t eP(t—s) 0
u(t,a) = [ 0 @t ]a+/() [ 0 Qt—5) }G(u(s,a))ds.

'ePt 0 t eP(tfs) 0
wra) = [ o e [0 ol | ctutsanas

Separate the convergent and non-convergent parts

[ePt 0 0 0 FT ePt=9 ¢ ) 0

= 0 0 ]a—i— { 0 @t ]CH—/O [ 0 0 }G(u(s,a))ds—k/o [ 0 Q@(t—s) }G(U(&G))dé’
r ePt 0 0 0 t P(t—s) 0

= 0 O]a—k{o th]a—F/O [e 0 O}G(u(s,a))ds

+/0°° { 8 eQ<(t)—s> }G(u(s,a))ds/too [ 8 eQ(ﬁ)_s) ]G(U(s,a))ds

Remove contributions that will cause it to not converge to the origin
et 0 fT Pt o o 0
u(t,a) = [ 0 o0 l¢ —l—/o 0 0 G(u(s,a))ds — /t 0 Q=9 G(u(s,a))ds

= U(t)a+ /0 Ut — s)G(u(s,a))ds — /too V(t—$)G(u(s,a))ds

Notice that last n — kcomponents of a do not enter the computation, we can take them to be zero. Next
we take the specific solution u(t, a)

t [eS)
u(t,a) =U(t)a + / Ut — s)G(u(s,a))ds — / V(t—$)G(u(s,a))ds
0 ¢
and see what it implies with respect to the intial conditions u(0, a) for the solution:
u;j(0,a) = aj, j=1,...,k

u;(0,a) = </OOOV(5)G(u(s,a))ds>j, j=k+1,....n

So the last n — k components of the initial conditions must satisfy
a; =v¥j(ar,...,a) == u;(0,a1,...,ax,0,...,0), j=k+1,...,n.
Therefore the stable manifold is defined by

S={(y1,-- )y =i, k), j=k+1,...,n}.



e The iterative scheme for calculating an approximation to S:

— Calculate the approximate solution u(™)(t, a)

— Foreach j=k+1,...,n,v¢;(a1,...,a;) is given by the j-th component of u(™(0, a).

Note: Similarly can calculate U by taking ¢t = —t.

¢ Example:

Then

O = |4 ]
(1) _67750,1
u(t,a) = 0

- —t t —(t—s) ® T 0 0
(2) _ e tay e 0 0 _ _
u (t7a/) = i 0 :| + A |: 0 0 :l |: 67280,% ds ; 0 6(t78) 672504% ds =

S 1 -4t —t\, 4
W (ta) = e a1+27e(f2t ) e ")aj
3 01

Next can show that u®%(¢,a) — u® (t,a) = O(a}) and therefore we can approximate by s (a;) =
—za} + O(a?) and the stable manifold can be approximated by

1
S xg= —ga:% +0(?)

as x1 — 0. Similarly get
1
U:z = —gxg + O(25)

1.2.2 Note on invariant manifolds:

Notice that if a manifold is specified by a constraint equation
y = h(z), reRF yeR"*

and the dynamics given by

then condition

Dh(z)s = gy

Dh(x)f(z,h(z)) = g(z,h(z))

suffices to show invariance. We’ll call this tangency condition. Exercise: Show that this is the case. If you’re
going to use this in the homework this week, you should prove it_first.




e FExample:
Itl = —x
To = 219 — 56.73%

Show that the set
S = {z € R?|zy = ez}

is invariant. We have
3ex?(—mw1) = 2exs — bex?.

1.2.3 Calculating the stable manifold (Alternative Method - Taylor expansion):

Let
y = h(z) = ax® + ba® + ca* + ...

Since invariant manifold we have:

Dh(z)t —y=0
we can match coefficients. For example
1 = -1
By = 2w — bext

Ty = h(x1) = ax? + bxd + O(x})
we get f(x1,h(r1)) = —21, g(x1, h(71) ~ 2(ax? + bx}) — Sex?

Dh(x) [ (z, h(z)) g(x, h(z))

¢
(2axy +3bx? +---)(—21) = 2ax]+ 2bx — Sexi+

Matching terms we get —2a =2a = a =0, —3b =2b—5e = b =c¢.

1.3 Global Manifolds

e In the proof S and U are defined in a small neighborhood of the origin, and are refered to as the local
stable and unstable manifolds of the origin.

Definition: Let ¢; be the flow of (1). The global stable and unstable manifolds of (1) at 0 are defined by
W#(0) = Ur<09:(5)

and
W (0) = Us>09:(S)
respectively.

The global stable and unstable manifold W#(0) and W*(0) are unique and invariant with respect to the
flow. Furthermore, for all z € W*(0), lim; o ¢¢(2) = 0 and for all 2 € W*(0), lim;—, _ ¢+(x) = 0.

Corollary: Under the hypothesis of the Stable Manifold theorem, if Re()\;) < —a < 0 < < Re(Ap)
forj=1,...,kand m =k +1,...,n then given ¢ > 0,there exists a 0 > Osuch that if zyp € N5(0) NS then
| (z0)| < ee™

for all t > Oand if zy € N5(0) N SU then
|6e(wo)| < ec™
for all ¢t < 0.



