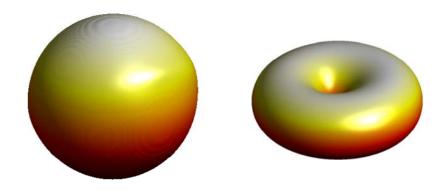
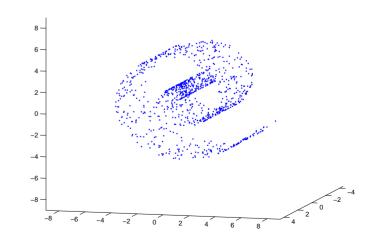
Diffeomorphic Warping

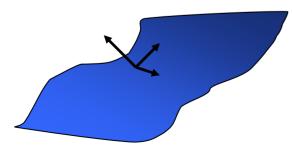
Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

What "Manifold Learning" Isn't

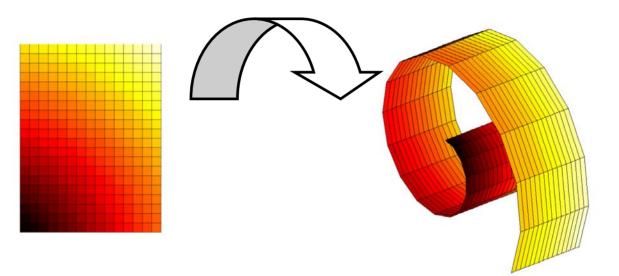
- Common features of Manifold Learning Algorithms:
 - 1-1 charting
 - Dense sampling
 - Geometric Assumptions







What Manifold Learning might be...



- Sample data in a low dimensional space
- Pass each data point through the same nonlinearity
- How to recover the data?

Probabilistic Model

- Data x_1, \dots, x_n in \mathbb{R}^d sampled from a joint distribution p(X)
- Each x is passed through a nonlinear function $f: \mathbb{R}^d \to \mathbb{R}^D \,. \qquad y_i {=} f(x_i)$
- The distribution for Y is given by

$$p_{\mathbf{Y}}(\mathbf{Y}; f) = p_{\mathbf{X}}(f^{-1}(y_1), \dots, f^{-1}(y_N))$$
$$\times \prod_{i=1}^{N} \det \left(\nabla f(f^{-1}(y_i)) \nabla f(f^{-1}(y_i))' \right)^{-1/2}$$

Diffeomorphic Warping

• If we assume that f is a diffeomorphism, there exists an inverse function in the neighborhood of the image such that g(f(x))=x and $\nabla g \nabla f = I$ for all x.

$$p_{\mathbf{Y}}(\mathbf{Y}; f) = p_{\mathbf{X}}(f^{-1}(y_1), \dots, f^{-1}(y_N))$$

$$\times \prod_{i=1}^{N} \det \left(\nabla f(f^{-1}(y_i)) \nabla f(f^{-1}(y_i))' \right)^{-1/2}$$

$$= p_{\mathbf{X}}(g(y_1), \dots, g(y_N)) \prod_{i=1}^{N} \det \left(\nabla g(y_i)' \nabla g(y_i) \right)^{-1/2}$$

Diffeomorphic Warping

- If we assume that f is a diffeomorphism, there exists an inverse function in the neighborhood of the image such that g(f(x))=x and $\nabla g \nabla f = I$ for all x.
- Taking a logarithm, we may search for the maximum likelihood g

$$\max_{g} \log p_{\mathbf{X}}(g(y_1), \dots, g(y_N)) + \frac{1}{2} \sum_{i=1}^{N} \log \det \left(Dg(y_i)' Dg(y_i) \right)$$

Benefits of this Perspective

- Asymptotic Convergence
- Out of Sample Extension
- No neighborhood estimates
- Incorporates Prior Knowledge
- Easy to make "semi-supervised"

Asymptotic Convergence

• If y_i is sampled iid,

$$\frac{1}{N}\sum_{i=1}^N \log p_y(y_i;g) \to \int_y p_y(y) \log p_y(y;g)$$

- Which is minimized when $p_y(y;g)=p_y$
- Similarly, if joint distribution is stationary and ergodic sequence and k-th order Markov, log p_Y converges to the cross entropy (Shannon-McMillian-Breiman Theorem)

Diffeomorphic Warping

 $\max_{g} \log p_{\mathbf{X}}(g(y_1), \dots, g(y_N)) + \frac{1}{2} \sum_{i=1}^{N} \log \det \left(\nabla g(y_i)' \nabla g(y_i) \right)$

Ingredients

- Set of functions
 - Prior on X
- Optimization Tools

- RKHS
- Dynamics
- Duality

Kernels

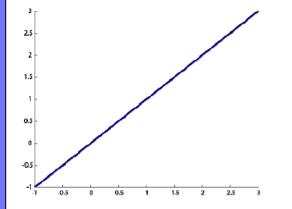
• **k** be a function of two variables which is *positive definite*

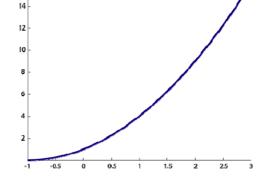
$$\sum_{i=1}^{N}\sum_{j=1}^{N}c_{i}c_{j}k(\mathbf{x}_{i},\mathbf{x}_{j}) \geq 0$$

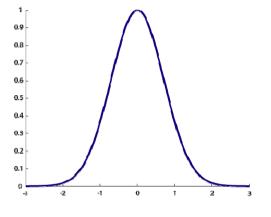
for all \mathbf{x}_i and \mathbf{c}_i . Such a function is called a *positive definite kernel*.

Examples of Kernels

16







Linear

Polynomial

Gaussian

 $\mathbf{k}(\mathbf{x}_1,\mathbf{x}_2) = \mathbf{x}_1^\top \mathbf{x}_2$

 $\mathbf{k}(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^\top \mathbf{x}_2)^d$

 $\mathbf{k}(\mathbf{x}_1, \mathbf{x}_2) = \\ \exp(-C \|\mathbf{x}_1 - \mathbf{x}_2\|^2)$

Aside: Checking Positivity

- When is a symmetric function a kernel?
- Polynomials trivial to check (positive definite form on monomials)
- Gaussians Fourier transform of positive function
- Sum and Mixtures
- Pointwise Products (Schur Product theorem)
- What else? And what algorithmic tools can we develop to check whether a kernel is positive?

Reproducing Kernel Hilbert Spaces

• Theorem: If X is a compact set and \mathcal{H} is a Hilbert space of functions from X to \mathbb{R} . Then all functionals

$$\delta_{\mathbf{x}}(f) = f(\mathbf{x})$$

are bounded iff there is a unique positive definite kernel $k(\mathbf{x}_1, \mathbf{x}_2)$ such that for all $f \in \mathcal{H}$ and $\mathbf{x} \in X$

$$\langle k(\mathbf{x}, \cdot), f \rangle = f(\mathbf{x})$$

k is called the *reproducing kernel* of \mathcal{H} .

RKHS (converse)

• If k(x₁,x₂) is a positive definite kernel on X, consider the set of functions

$$\mathcal{F} = \{\phi_{\mathbf{x}}(\mathbf{y}) := k(\mathbf{x}, \mathbf{y})\}$$

- And define the inner product $\langle \phi_{\mathbf{x}}, \phi_{\mathbf{y}} \rangle = k(\mathbf{x}, \mathbf{y})$
- Then the span of \mathcal{F} is an inner product space and its completion is an RKHS

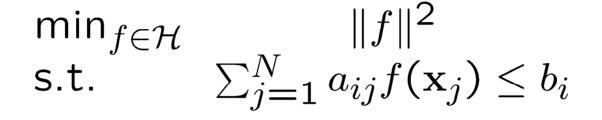
Properties of RKHS

• Let
$$\alpha = \sum_{i} c_{i} \mathbf{k}(\mathbf{x}_{i}, \cdot)$$

 $\|\alpha\|_{K}^{2} = \langle \alpha, \alpha \rangle = \sum_{i,j} c_{i} c_{j} \langle \mathbf{k}(\mathbf{x}_{i}, \cdot), \mathbf{k}(\mathbf{x}_{j}, \cdot) \rangle = \mathbf{c}^{\top} \mathbf{K} \mathbf{c}$
where $\mathbf{K}_{ij} = \mathbf{k}(\mathbf{x}_{i}, \mathbf{x}_{j})$

• If
$$\mathbf{x} \in X$$
 $\langle \alpha, \mathbf{k}(\mathbf{x}, \cdot) \rangle = \sum_{i} c_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) = \alpha(\mathbf{x})$

Duality and RKHS



$$f^*(\mathbf{x}) = \sum_{i,j=1}^N \lambda_i a_{ij} k(\mathbf{x}_j, \mathbf{x})$$

- λ_i is the Largrange multiplier associated with constraint i
- No duality gap

Duality and RKHS

$$\mathcal{L} = ||f||^2 - 2\sum_i \lambda_i \left(\sum_{j=1}^N a_{ij} f(\mathbf{x}_j) - b_i\right)$$
$$= \langle f, f \rangle - 2\sum_i \lambda_i \left(\sum_{j=1}^N a_{ij} \langle f, \phi_{\mathbf{x}_j} \rangle - b_i\right)$$
$$= \langle f, f \rangle - 2 \langle \sum_{i,j} f, \lambda_i a_{ij} \phi_{\mathbf{x}_j} \rangle - \sum_i \lambda_i b_i$$

Dual:
$$\max_{\lambda} -\lambda' \mathbf{Q} \lambda + \mathbf{b}^{\top} \lambda$$

Duality and RKHS

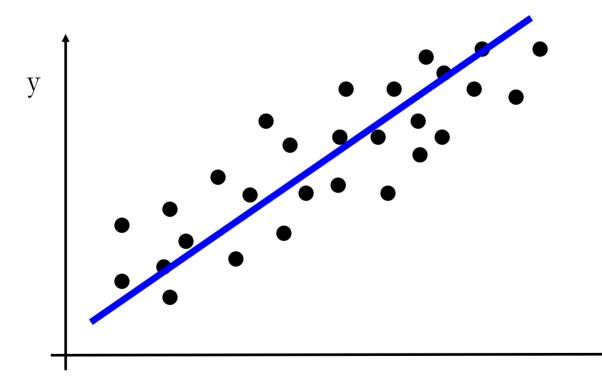
$$\min_{f \in \mathcal{H}} \quad \|f\|^2 \\ \text{s.t.} \quad \sum_{j=1}^N a_{ij} f(\mathbf{x}_j) \le b_i$$

$$f^*(\mathbf{x}) = \sum_{i,j=1}^N \lambda_i a_{ij} k(\mathbf{x}_j, \mathbf{x})$$

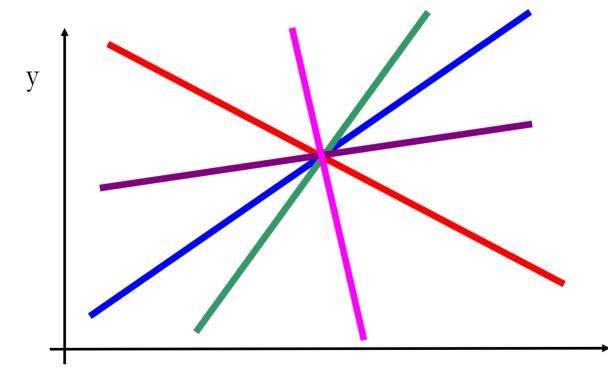
$$\max_{\lambda} -\lambda' \mathbf{Q} \lambda + \mathbf{b}^{\top} \lambda$$

- Optimizations involving norm of f and f on data admit finite representation
- Nonlinearity of kernel gives nonlinear functions
- Extends to gradients of f
- Hugely successful in approximation and learning

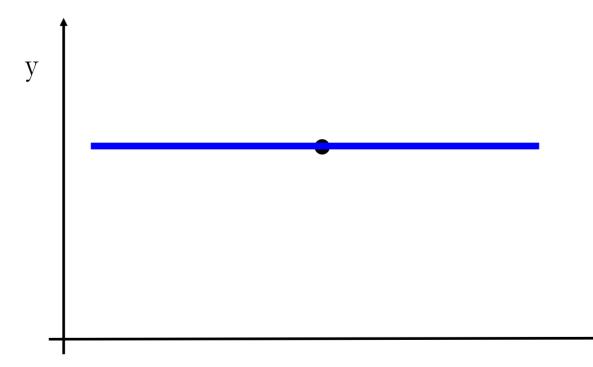
Find best linear model agreeing with data



Find best linear model agreeing with data



Find best linear model agreeing with data



• Find best linear model agreeing with data

$$\min_{\mathbf{w},d} \sum_{i=1}^{L} (\mathbf{w}^{\top} \mathbf{x}_i + d - y_i)^2 + \lambda \|\mathbf{w}\|_K^2$$

Agree with data

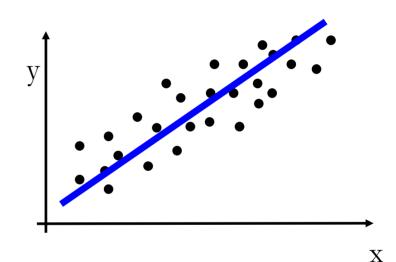
Smoothness/Complexity

• Linear f. Euclidean Norm. Solution:

$$f(\mathbf{x}) = \sum_{i=1}^{L} c_i(\mathbf{x}_i^{\top} \mathbf{x}) + d$$

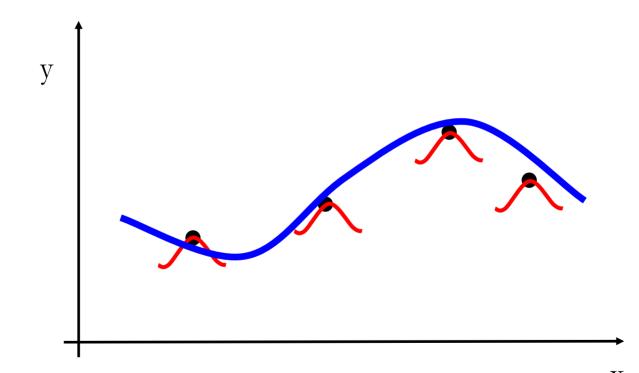
Linear Regression: Morals

- Can be solved with least-squares.
- The solution is a linear combination of the data.
- Computing f(x) only involved inner products of the data.
- How about nonlinear models?



Regression (nonlinear)

• Search over an RKHS



• Evgeniou et al (1999), Poggio and Smale (2003)

Nonlinear Regression

• Find best model agreeing with data

$$\min_{f} \sum_{i=1}^{L} (f(\mathbf{x}_{i}) - y_{i})^{2} + \lambda \|f\|_{K}^{2}$$

Agree with data

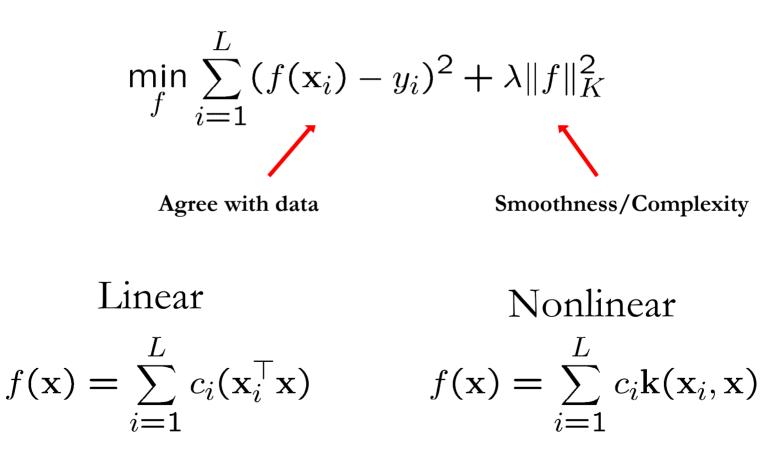
Smoothness/Complexity

• $f \in RKHS$, RKHS norm. Solution:

$$f(\mathbf{x}) = \sum_{i=1}^{L} c_i \mathbf{k}(\mathbf{x}_i, \mathbf{x})$$

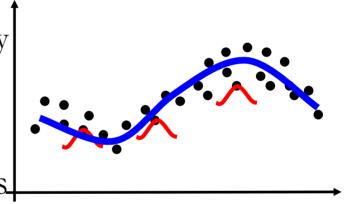
Nonlinear Regression

• Find best model agreeing with data.



Nonlinear Regression: Morals

- Can be solved with least-squares.
- The solution is a linear combination of kernels centered at the data.
- Computing f(**x**) only involves kernel products of the data.
- RKHS often dense in L_2 .



Х

Generalization and Stability

- Regularizing with the norm makes algorithms *robust* to changes in the training data
- Models *generalize* if they predict novel data as well as they predict on the training data
- **Theorem:** A model generalizes if and only if it is robust to changes in the data [Poggio et al 2004].
- The RKHS norm is meaningful: penalizes complexity.

Diffeomorphic Warping with RKHS
$$\max_{g} \log p_{\mathbf{X}}(g(y_1), \dots, g(y_N)) + \frac{1}{2} \sum_{i=1}^{N} \log \det \left(\nabla g(y_i)' \nabla g(y_i) \right) + \lambda_r ||g||^2$$

- We know: $g(y) = \sum_{i=1}^{N} c_i k(y_i, y) + a_i^{\top} \nabla k(y_i, y)$
- But log det is not convex in (a,c)
- Construct a dual problem as approximation. If p_X is a zero-mean gaussian, we get a determinant maximization problem [Vandenberghe et al, 1998]

$$\min_{\mathbf{S} \succeq 0} \mathsf{Tr}(\Omega \mathbf{S}) - \sum_{k=1}^{N} \mathsf{log}(\mathsf{Tr}(\mathbf{J}_k \mathbf{S}))$$

Eigenvalue Approximation

$$\min_{\mathbf{S} \succeq 0} \mathsf{Tr}(\Omega \mathbf{S}) - \sum_{k=1}^{N} \mathsf{log}(\mathsf{Tr}(\mathbf{J}_k \mathbf{S}))$$

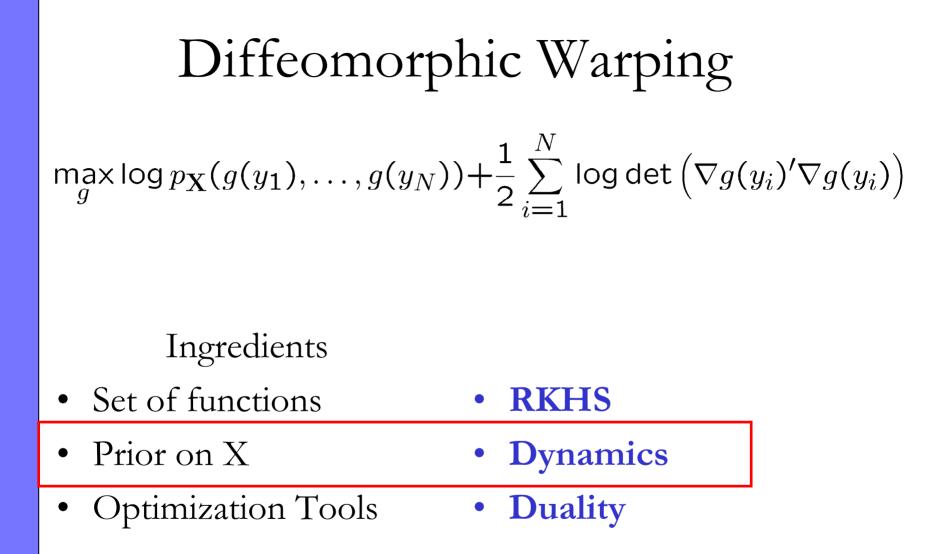
• Ω^{-1} is an optimal solution if and only if

$$\Omega - \sum_{k=1}^{N} \frac{1}{\operatorname{Tr}(\mathbf{J}_k \Omega^{-1})} \mathbf{J}_k \succeq \mathbf{0}$$

- This follows from KKT conditions of MAXDET
- The eigenvalues of Ω give coefficients for the expansion of g

Remarks

- Dual can be solved using an interior point method
- Provides a lower bound on the log-likelihood
- We can approximate with a spectral method
- Easy to extend to any log-concave prior on X
- Performs quite well in experiments



Dynamics

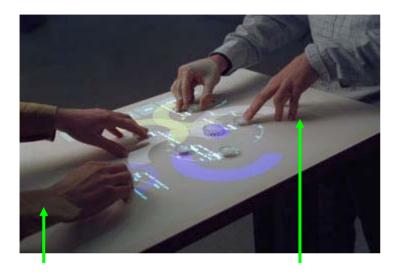
 $s[t + 1] = As[t] + \omega[t]$ $x[t] = Cs[t] + \nu[t]$ $\mathbb{E}[\omega[t]\omega[t]'] = \Lambda_{\omega}$ $\mathbb{E}[\nu[t]\nu[t]'] = \Lambda_{\nu}$

Assume data is generated by an LTIG system

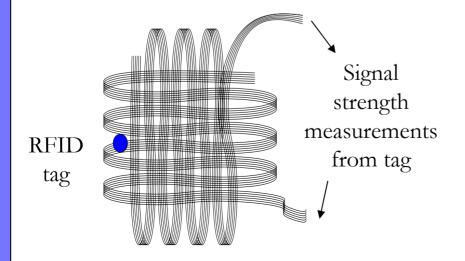
$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} 1 & \delta & 0 \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{bmatrix}$$

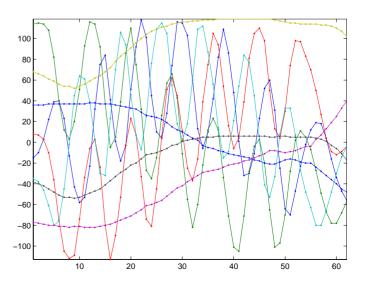
For the experiments, this model can be very dumb!

The Sensetable

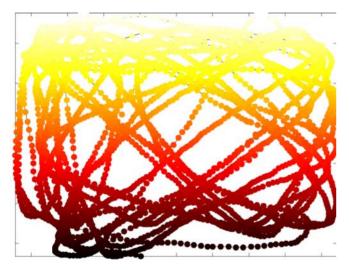


James Patten

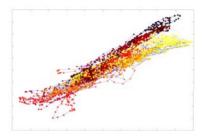


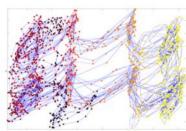


Sensetable: Manifold Learning

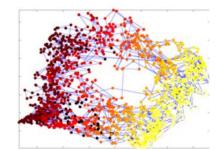


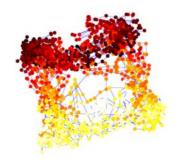
Ground Truth





KPCA

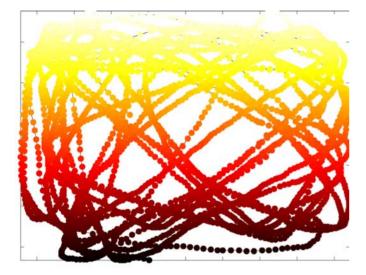




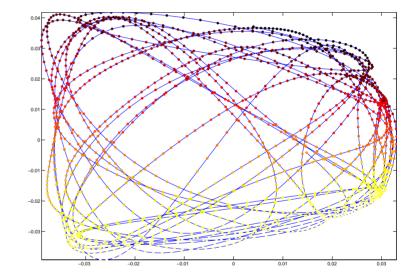
Isomap

ST-Isomap

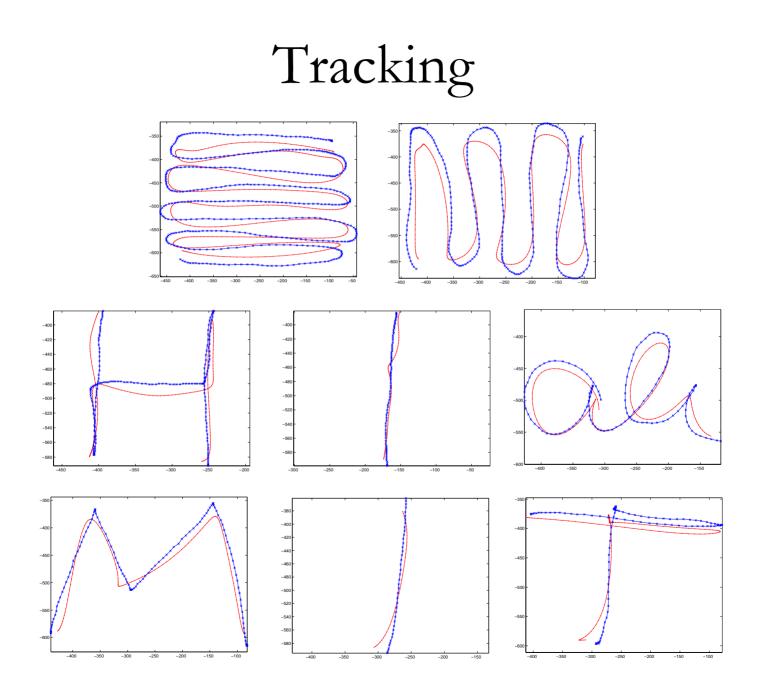
Sensetable: DW

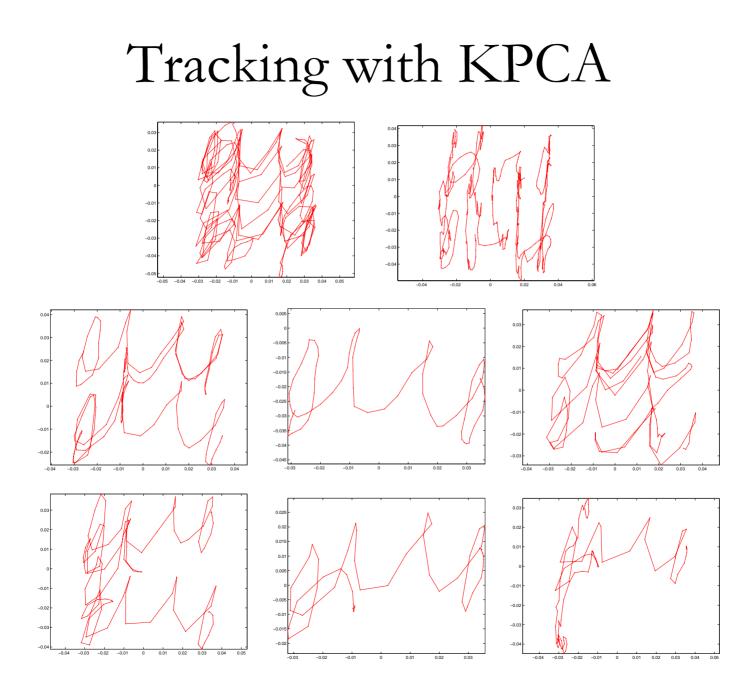


Ground Truth



Diffeomorphic Warping

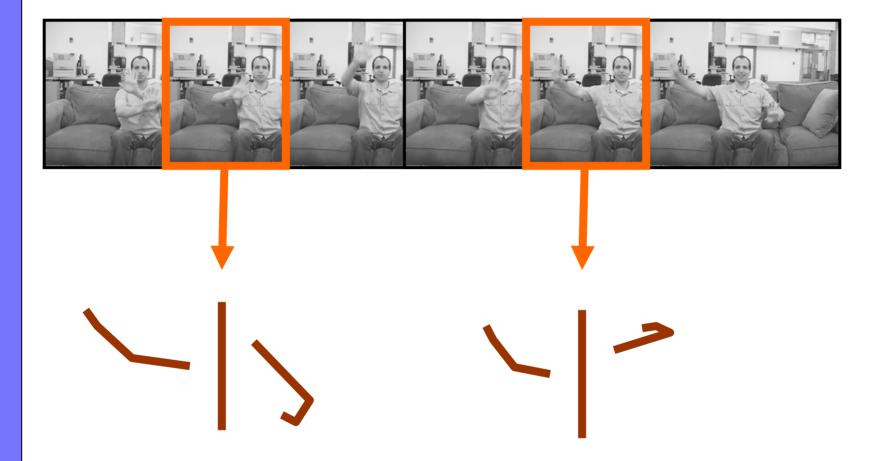




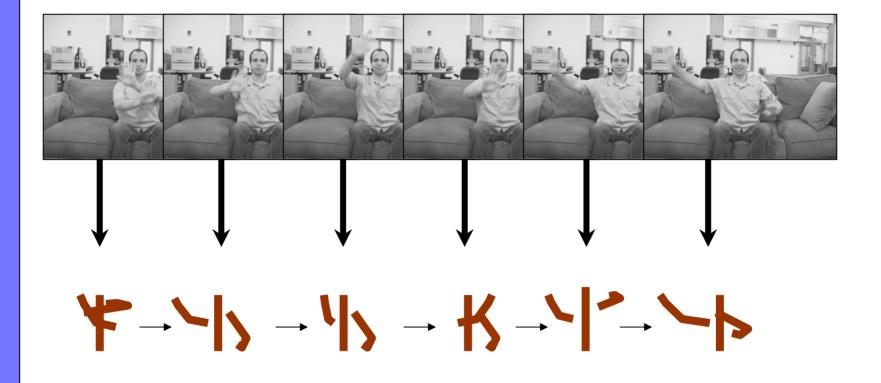
Representation

• Big mess of numbers for each frame

• Raw pixels, no image processing



Annotations from user or detection algorithms



Assume that output time series is smooth.

Future Work

- Speeding up the log-det
- Optimizing over families of priors p_X
- Estimating the duality gap
- Learning manifolds that need more than one chart
- Understanding why nonparametric ID is easy while parametric ID is hard