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What “Manifold Learning” Isn’t

• Common features of 
Manifold Learning 
Algorithms:
– 1-1 charting
– Dense sampling
– Geometric Assumptions
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What Manifold Learning might be…

• Sample data in a low dimensional space
• Pass each data point through the same nonlinearity
• How to recover the data?



Probabilistic Model
• Data  x1,…,xn in Rd sampled from a joint 

distribution p(X)
• Each x is passed through a nonlinear function

f: Rd → RD . yi=f(xi)
• The distribution for Y is given by



Diffeomorphic Warping

• If we assume that f is a diffeomorphism, there exists 
an inverse function in the neighborhood of the 
image such that g(f(x))=x and ∇g∇f = I for all x.



Diffeomorphic Warping

• If we assume that f is a diffeomorphism, there exists 
an inverse function in the neighborhood of the 
image such that g(f(x))=x and ∇g∇f = I for all x.

• Taking a logarithm, we may search for the 
maximum likelihood g



Benefits of this Perspective

• Asymptotic Convergence
• Out of Sample Extension
• No neighborhood estimates
• Incorporates Prior Knowledge
• Easy to make “semi-supervised”



Asymptotic Convergence

• If yi is sampled iid,

• Which is minimized when py(y;g)=py

• Similarly, if joint distribution is stationary and  
ergodic sequence and k-th order Markov, log pY
converges to the cross entropy (Shannon-McMillian-
Breiman Theorem)



Diffeomorphic Warping

Ingredients
• Set of functions
• Prior on X
• Optimization Tools

• RKHS

• Dynamics

• Duality



Kernels

• k be a function of two variables which is positive 
definite

for all xi and ci.  Such a function is called a positive 
definite kernel.



Examples of Kernels

GaussianPolynomialLinear



Aside: Checking Positivity

• When is a symmetric function a kernel?
• Polynomials – trivial to check (positive definite form 

on monomials)
• Gaussians – Fourier transform of positive function
• Sum and Mixtures
• Pointwise Products (Schur Product theorem)
• What else?  And what algorithmic tools can we 

develop to check whether a kernel is positive?



Reproducing Kernel Hilbert Spaces

• Theorem: If X is a compact set and H is a Hilbert 
space of functions from X to R. Then all 
functionals

are bounded iff there is a unique positive definite 
kernel k(x1, x2) such that for all f∈H and x∈ X

k is called the reproducing kernel of H.



RKHS (converse)

• If k(x1,x2) is a positive definite kernel on X, consider 
the set of functions

• And define the inner product

• Then the span of      is an inner product space and 
its completion is an RKHS



Properties of RKHS

• Let   

where Kij = k(xi,xj)

• If x∈X



Duality and RKHS

• λi is the Largrange multiplier associated with 
constraint i

• No duality gap



Duality and RKHS

Dual:



Duality and RKHS
• Optimizations involving 

norm of f and f on data 
admit finite representation

• Nonlinearity of kernel gives 
nonlinear functions

• Extends to gradients of f
• Hugely successful in 

approximation and learning



Linear Regression

• Find best linear model agreeing with data
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Linear Regression

• Find best linear model agreeing with data

• Linear f. Euclidean Norm. Solution: 

Agree with data Smoothness/Complexity



Linear Regression: Morals

• Can be solved with least-
squares.

• The solution is a linear 
combination of the data.

• Computing f(x) only 
involved inner products of 
the data.

• How about nonlinear 
models?
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Regression (nonlinear)

• Search over an RKHS

• Evgeniou et al (1999), Poggio and Smale (2003)
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Nonlinear Regression

• Find best model agreeing with data

• f ∈ RKHS, RKHS norm. Solution:

Agree with data Smoothness/Complexity



Nonlinear Regression

• Find best model agreeing with data.

Agree with data Smoothness/Complexity

Linear Nonlinear



Nonlinear Regression: Morals

• Can be solved with least-
squares.

• The solution is a linear 
combination of kernels 
centered at the data.

• Computing f(x) only involves 
kernel products of the data.

• RKHS often dense in L2.
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Generalization and Stability

• Regularizing with the norm makes algorithms 
robust to changes in the training data

• Models generalize if they predict novel data as well 
as they predict on the training data

• Theorem: A model generalizes if and only if it is 
robust to changes in the data [Poggio et al 2004].

• The RKHS norm is meaningful: penalizes 
complexity.



Diffeomorphic Warping with RKHS

• We know:
• But log det is not convex in (a,c)
• Construct a dual problem as approximation. If pX is 

a zero-mean gaussian, we get a determinant 
maximization problem [Vandenberghe et al, 1998]



Eigenvalue Approximation

• Ω-1 is an optimal solution if and only if 

• This follows from KKT conditions of MAXDET
• The eigenvalues of Ω give coefficients for the 

expansion of g



Remarks

• Dual can be solved using an interior point method
• Provides a lower bound on the log-likelihood
• We can approximate with a spectral method
• Easy to extend to any log-concave prior on X
• Performs quite well in experiments



Diffeomorphic Warping

Ingredients
• Set of functions
• Prior on X
• Optimization Tools

• RKHS

• Dynamics

• Duality



Dynamics

Assume data is 
generated by an 
LTIG system

For the experiments, 
this model can be 
very dumb!



The Sensetable

MeJames Patten
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Sensetable: Manifold Learning

LLE

Ground Truth

KPCA

Isomap

ST-Isomap



Sensetable: DW
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Tracking
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Tracking with KPCA
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Video



Representation

• Big mess of numbers for each frame

• Raw pixels, no image processing





Annotations from user or detection algorithms



Assume that output time series is smooth.



Video



Future Work

• Speeding up the log-det
• Optimizing over families of priors pX

• Estimating the duality gap

• Learning manifolds that need more than one chart
• Understanding why nonparametric ID is easy while 

parametric ID is hard
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