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Law #1 : Mechanics
(instead of chemistry)

Law #2 . Gravity
(instead of autocatalysis)

(M +m)X+mI(écos@—6’zsin<9):u
€asy  scos@+16+gsind=0
y=X+alsing

j> (M +m)%X+mlg =u
X+10+ g0 =0

linearize y=x+alb




(M +m)x+ml(dcosd—6sing)=u
Xc0s@+16 +gsind =0
y=X+alsing

liInearize

N

(M +m)%+mlg =u
X+10+90=0
y=X+ald



Law #3 : Light (M +m)%+mlf =u
X+10+ 90 =0
y=X+cald

Why?

harder

Easy to prove using simple models.
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Crashes
can be
made rare
with active
control.



Q What iIs sensed matters.

harder hardest!

Why?

Easy to prove using simple models.



Q What is sensed matters.

hardest!

harder

Unstable zeros

Unstable poles
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Measure
Length
lg, M

1.2}

0.8}
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Mechanics+

Completing the story G_ravity T
Light +
vision —jln\T (p o~ jda)
L+ P
> |
Balancing =pr+in Z—p

an inverted
pendulum



Explain this
amazing

Slow system.

Fast

A AYAVVAN

Flexible Inflexible




e Neuroscience motivation

Robust vision with motion

l I
Vision

e




Experiment
* Motion/vision control without blurring
 Which is easier?



VIsion

Fast

Why?

Mechanism
Tradeoff




Mechanism

Vestibular
Ocular
Reflex
(VOR)

Slow Vision

Tradeoff
Fast

Flexible Inflexible
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Slow

VISIion
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Vestibular
Ocular
Reflex
(VOR)

Slow

Fast

Flexible Inflexible



Slow

Fast

Flexible Inflexible



Slow

VISIion

Fast

Flexible Inflexible
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Slow vision

whd,

Fast IHlusion

Flexible Inflexible
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Fast

Flexible

Architecture
(constraints that
deconstrain)

Inflexible



Slow

VISIion

Fast

Flexible Inflexible
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Q What iIs sensed matters.

harder hardest!

Why?

Easy to prove using simple models.
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Measure
Length
lg, M
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Slow vision
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B&W (luminence only):
3D, motion, and action

VISIOn

Slow

VISion

Fast

Flexible Inflexible



Stare at the intersection







Stare at the intersection
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Seeing Is dreaming

color
——
VISIiOon

Slow

VISion

Fast

Flexible Inflexible



slower

Objects
Slow
3d+motion
B&W
slow fast
Fast L Mixed VOR
—

Flexible Inflexible






Not sure how to draw this...

slower
Objectsh_’
Slow
Faces
3d+motion
B&W
slow fast
Mixed VOR

Fast L

Flexible Inflexible
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Seeing Is dreaming

Highly
evolved
Slow (hidden)
architecture

|

Fast lllusion

Flexible Inflexible



Seeing Is dreaming
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conscious
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Other dimensions?
Slow

Cheap

Fast
Costly

>

Flexible Inflexible

General Special



Requirements on systems and architectures

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
credible
process
capable
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

dependable
deployable
discoverable
distributable
durable
effective
efficient
evolvable
extensible
fail transparent
fast
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable

manageable
mobile
modifiable
modular
nomadic
operable
orthogonality
portable
precision
predictable
producible
provable
recoverable
relevant
reliable
repeatable
reproducible
resilient
responsive
reusable
robust

safetg
scalable
seamless
self-sustainable
serviceable
supportable
securable
simplicity
stable
standards
compliant
survivable
sustainable
tailorable
testable
timely
traceable
ubiquitous
understandable
upgradable
usable



Sustainable = robust + efficient

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

dependable
deployable
discoverable
distributable
dHcrab.Ie
effective
efficient
evolvable
extensible

fail transparent
fast
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable

manageable safetg

mobile scalable
modifiable seamless
modular self-sustainable
nomadic serviceable
operable supportable
orthogonality securable
portable simple
precision stable
predictable standards
producible suryivable
provable sustalnable
recoverable tailorable
relevant testable
reliable timely
repeatable traceable
reproducible  ubiquitous
resilient understandable
responsive upgradable
reusable usable

robust



PCA = Principal Concept Analysis ©

accessible dependable manageable safet
accountable deployable mobile scalable
accurate discoverable modifiable seamless
adapt stainable
admin eable
afford rtable
audit ble
auton
avalla dichotomous
comp . rds
comp tradeoff pairs able
config INable
corre ble
custo le

egra i e
detor efficient wasteful — p2=

interoperable  rRYByaASt

learnable
maintainable



RESEARCHARITICLE ‘

v UG biochem, math,

fc ‘
- - - - - W t Ith ;.
Glycolytic Oscillations and Limits 0N i .o me sy wo s

. = molecules are consumed upstream and four are

Robust Efficiency prodwed dowmres, which omlizs 0. - |
(each y molecule produces two downstream) with

kamene exponent a = 1 To highhght essential
trade-ofts with the simplest possible analysis, we
nommalize the concentrabom such that the un-
perturbed (& = 0) steady states are ¥ = 1 and
¥ = 1 /k [the system can have one additional
deady state, which is unstable when (1, k) 15 sta-
ble]. [See the supporting onlme materal (S0M)
part ). The basal rate of the PFK reaction and
the consumption rate have been normahized to
1 (the 2 in the numerator and feedback coefh-

Fiona A. Chandra,’* Gentian Buzi,® John C. Doyle®

Both engineering and evolution are constrained by trade-offs between efficiency and robustness,
but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we
explicitly derive analytic equations for hard trade-offs between robustness and efficiency with
oscillations as an inevitable side effect. The model describes how the trade-offs arise from
individual parameters, including the interplay of feedback control with autocatalysis of network
products necessary to power and catalyze intermediate reactions. We then use control theory to
prove that the essential features of these hard trade-off "laws” are universal and fundamental, in
that they depend minimally on the details of this system and generalize to the robust efficien . . . . )
of anyr‘:’:ﬂucztal',rﬁc nemar?k. The theory also mgge.’;_'i wnrst-cagse condiions that are |:|::|r'|5i5t+e.=nr:'lr {f“mEE of ““““"’““_m“’”‘?” from Lhcwmm"_iluﬂ'_
el s aes . tions). Our results hold for more general systems
'I'ﬂth lmm" Hpenmenm' i iscaimnad halassr and o OOWRT e i

v v b reae

Chandra, Buzi, and Doyle

AYAAAS

Most important paper so far.

www.sciencemag.org SCIENCE VOL 333 8 JULY 2011



Hard tradeoff in glycolysis is

* robustness vs efficiency

e absent without autocatalysis

e too fragile with simple control

e plausibly robust with complex control

fragile
10"
Z+p
7-p —IIn‘S (Z P jda)
complex 74+ p
> In |
No tradeoff £=P
1010 k 10° 10"

expensive



Balancing
an inverted
pendulum

8
Fragility
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Z+ P
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No tradeoff
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Balancing
an inverted
pendulum

10"
fragile

Z+p
Z=P

Inflexible
Special

Flexible
General

Microtubule (3)
Secretory vesicles (102

too
fragile

Nucleus (112)
ER (307)

Lipid granule (31)

Peroxisome (37) g wall Plasma
(44) ~ membrane (226)

-1 k 100

No tradeoff

10"
expensive
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Flexible Inflexible .......
General Special



Universal laws and architectures

(Turing)
Slow Architecture
(constraints that
deconstrain)
Fast

Flexible Inflexible
General Special




Computational

Really complexity
slow
Slow 6@/»
(0 4 /4
",
Vs
Fast

Undecidable  Decidable NP P

Flexible/ Inflexible/
General Specific



Sustainable = robust + efficient

accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable

anageable safetg
obile scalable
Issues odifiable seamless
odular self-sustainable
Fast )magilc serviceabgcla
perable supportable
Robust thogonality securable
Flexible prtable simple
o ecision stable
Efficient 'egictabkile standarglls
: 'oducible suryivable
Stochastics ovable su§taglnable
coverable tailorable
Memory levant testable
inspectable reliable timely
installable repeatable traceable
Integrity reproducible  ubiquitous
interchangeable resilient understandable
interoperable responsive upgradable
learnable reusable usable

maintainable

robust



Weaknesses so far

e« Some flaws as presented
o See If we can find the flaws and fix them

 What could be improved?
— Model
— Theory
— Experiment

e Suggestions?




Model?

1 dimension with 4 states?
What about the other 2 dimensions?

Let’'s imagine (but not derive) a 10 state
model and see what would happen

New Issues arise
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Model to Theory?

Linearization? Mostly ok.
Actuation and sensing, mostly ok.
Noise model? Needs work. Why?

Noise and delay is from measuring distance
using stereopsis . How to model this?

What about all the detailed physiology of
muscle, joints, bone, nerves, etc?

Need layered control architectures.



Theory

« Analytic results are not scalable
e Aim not analytic formulas but tractable algos



Main lessons

 Theory: hard limits on closed loop
performance, aggravated by

— Instability (unstable poles)
— Delay
— Unstable zeros

 Neuroscience specific



Instabllities In technology

o Efficiency
e Autocatalysis



Select instabilities in biology

Working backwards

e Society/agriculture/weapons/etc

e Bipedalism

 Maternal care

 Warm blood

e Flight

« Mitochondria

* Translation (ribosomes)

* Glycolysis (see 2011 Science paper)
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