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Solving Large-Scale Hybrid
Circuit-Antenna Problems

Javad Lavaei, Student Member, IEEE, Aydin Babakhani, Ali Hajimiri, and John C. Doyle

Abstract—Motivated by different applications in circuits,
electromagnetics, and optics, this paper is concerned with the
synthesis of a particular type of linear circuit, where the circuit
is associated with a control unit. The objective is to design a con-
troller for this control unit such that certain specifications on the
parameters of the circuit are satisfied. It is shown that designing a
control unit in the form of a switching network is an NP-complete
problem that can be formulated as a rank-minimization problem.
It is then proven that the underlying design problem can be cast
as a semidefinite optimization if a passive network is designed
instead of a switching network. Since the implementation of a
passive network may need too many components, the design of a
decoupled (sparse) passive network is subsequently studied. This
paper introduces a tradeoff between design simplicity and imple-
mentation complexity for an important class of linear circuits.
The superiority of the developed techniques is demonstrated by
different simulations. In particular, for the first time in the liter-
ature, a wavelength-size passive antenna is designed, which has
an excellent beamforming capability and which can concurrently
make a null in at least eight directions.

Index Terms—Antenna radiation pattern, circuit network
analysis, circuit optimization, convex optimization, integrated
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lobe levels as a semide�nite programming problem.

Different problems in circuits, EMs, and optics may be for-
mulated as an optimization over the parameters of a multiport
passive network that is obtained, for instance, via an EM simu-
lation. As an example, it is shown in [10] that a strikingly ef�-
cient and practical way to deal with certain complex antenna
problems is to extract a circuit model and then to search for
the appropriate values of its parameters. The circuit model pro-
posed in [10] is indeed a simple and general model that could
be considered as the abstract model of different types of prob-
lems. A question arises as to whether there exists a systematic
method to study such circuit problems by means of ef�cient
algorithms. This paper basically aims to address this question
using the available techniques developed in the control theory,
especially the LMI and passivity concepts.
using the convex-based heuristic method proposed in [12] (and
further studied in [13]). This heuristic method is able to cor-
rectly solve the rank-minimization problem in some cases. Note
that the main assumption required in this paper is the linearity
of the given network at the desired frequency, and hence, the
developed technique is not applicable to nonlinear circuits that
cannot be satisfactorily linearized at the frequency of interest.

The techniques developed here are applied to two antenna de-
sign problems to demonstrate how the optimal antenna con�g-
urations with a superior performance can be engineered. In par-
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Fig. 4. Filter shown in Fig. 3 is redrawn in the form of Circuit 1.

Fig. 4 so that the magnitude of the observed output of the cir-
cuit is maximized. The following three points can be made here.

1) The control unit in Fig. 4 is highly structured in the sense
that its seven terminal ports are connected to each other in
a particular way by the elements to . How to design
a control unit with a prescribed structure will be explained
later in Section III-F.

2) The linear passive network in Fig. 4 has some distributed
elements, namely, transmission lines. However, they can
be replaced by their lumped models at frequency.

3) As a generalization to the feasibility problem de�ned ear-
lier by (1), one can also maximize some quantity of interest
in addition to imposing the constraints given in (1). For ex-
ample, the magnitude of the observed output of the circuit
can be maximized (this is explained in Section III-F).

B. Motivation

Numerical methods and ef�cient optimization techniques,
enabled by increasing the computational power, have been
markedly instrumental in advancing the �eld of modern elec-
trodynamics. The progress in this �eld, which was limited
to the development of analytical models for antenna charac-
teristics such as pattern, ef�ciency, and impedance, has been
greatly in�uenced by novel numerical techniques in time or
frequency domains. Frequency-domain techniques such as the
�nite element method [15] and the method of moments [16],
as well as the time-domain algorithms such as the �nite differ-
ence technique [17], have been extensively used in designing
the EM structures. These numerical methods, combined with
optimization techniques such as genetic algorithm [18] and
particle swarm optimization (PSO) [19], provide a valuable,
but inef�cient, tool in designing large-scale EM structures
where thousands of passive elements are involved. Indeed, the
available numerical techniques iteratively search for a subop-
timal solution. Since a new time-consuming EM simulation
needs to be run at each iteration, this approach could be really
prohibitive due to the exponential number of iterations.

In the recent paper [10], this crucial issue is partially resolved
by introducing a novel method, which requires performing the
EM simulation only once to extract the equivalent circuit model
of the system at a single frequency of interest. The EM problem
then reduces to solving a noniterative optimization problem over
the parameters of this circuit model. It is noteworthy that this cir-
cuit model is in the form of Circuit 1, in which ports
correspond to the receiving antennas at the far �eld and ports

Fig. 5. Circuit 2 obtained from Circuit 1 by using a switching control unit.

correspond to the controllable ports on the transmit-
ting antenna. Now, ports on the transmitting antenna
should be controlled in such a way that the desired voltages are
received in the far �eld of the receiving antennas .
Roughly speaking, many problems governed by Maxwell’s dif-
ferential equations seeking optimal values of the termination im-
pedances/voltages can be converted to the circuit problem intro-
duced earlier.

C. Related Work

The study in [7] studies a linear resistor–capacitor cir-
cuit described by the differential equation

(2)

where and are the symmetric pos-
itive-de�nite capacitance and conductance matrices to be de-
signed, is a vector of the node voltages, and

is a vector of the independent voltage sources. Let
be a vector of unknown design parameters,

and assume that matricesand that are being sought are re-
quired to depend af�nely on , i.e.,

where and are some given matrices. It
is shown in [7] that the problem of �nding the parameter vector

in such a way that the dominant time constant of the cir-
cuit (2) is optimized can be cast as a semide�nite programming
problem. The present work deals with another type of circuit
problem, which is more complicated than the one tackled in [7].
The reason is that the control unit that is to be designed for Cir-
cuit 1 may not be characterizable as an af�ne function of the
design parameters and . However, it will be
shown in this paper that the underlying problem can also be cast
as a semide�nite programming problem.

III. M AIN RESULTS

Different types of control units will be designed for Circuit 1
in the following sections.

A. Switching Control Unit

Motivated by the antenna application [10] discussed earlier,
the most desirable (and simplest) type of control unit is likely
a switching controller, which connects every port

to an ideal switch that is either on or off (the switch
connected to port is calledswitch ). This is shown in Fig. 5,
and the corresponding circuit is referred to asCircuit 2. The
problem that is being addressed here is formalized next.

Problem 1: Find whether it is possible to turn on a subset
of switches in Circuit 2 so that the design
speci�cations given in (1) are all satis�ed.
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To analyze Circuit 2, introduce the shorthand notations

One can write a number of equations as

(3a)
(3b)
(3c)

where denotes the admittance transfer function of the linear
passive -port network (the middle block in the circuit) at a
given frequency or, equivalently, the -parameter matrix of
the network at frequency . Note that is a complex-valued
matrix whose real and imaginary parts are both symmetric.

Denote the set of complex numbers with. De�ne
and to be the sets of stan-

dard basis vectors of and , respectively. Throughout
this paper, the notation is used to show the matrix inequalities
in the positive de�nite sense. The symbol “” is also used to
denote the conjugate transpose of a matrix. The following
theorem recasts Problem 1 as an optimization problem.

Theorem 1: Minimize the rank of the matrix

(4)

for the variables and that are
subject to the constraints

(5a)

(5b)

(5c)

(5d)
(5e)
(5f)
(5g)

where denotes theth row of matrix . Problem 1 is feasible
if and only if the value of the minimum rank is equal to one, in
which case a feasible solution can be extracted as follows: for
every , turn on switch if and only if the th
entry of is zero.

Proof of Necessity: Assume that Problem 1 has a feasible
solution. Let denote the number of switches whose connection
makes the design speci�cations given in (1) be satis�ed. Denote
the set of such switches with .
The goal is to construct a matrix and a
vector for which the rank of matrix (4) is one, and
in addition, the constraints in (5) are all satis�ed. To this end,
consider Circuit 2, with switches turned on (and
the remaining switches turned off). One can write

This implies that

(6)

On the other hand, it follows from (3a) that

(7)

Equation (7) can be substituted into (6) to obtain

(8)

De�ne

(9)

The constraints given in (5) are all satis�ed for this particular
choice of and because of the following observations.

1) In light of the relations

the constraints (5a)–(5d) in Theorem 1 correspond to the
design speci�cations (1a)–(1d), respectively, which are al-
ready assumed to hold when switches are
turned on.

2) The constraint (5e) corresponds to the design speci�cation
(1e) [due to the equality (7)].

3) The constraint (5f) corresponds to the relation (8) on noting
that

4) The condition given in (5g) holds due to the
de�nition of matrix in (9) as

5) The rank of the matrix provided in (4) is equal to one in
light of the vector decomposition

Proof of Sufficiency: Assume that there exist a matrix
and a vector such that the rank of

matrix (4) is equal to one and such that the constraints in (5)
are all satis�ed. Identify every index for
which the th entry of is zero, and denote the set of all such
indices as . The intent is to prove that Problem 1
is feasible, and indeed, the design speci�cations (1) are satis�ed
for Circuit 2 when switches are turned on. To this
end, consider the matrix

(10)

whose rank is assumed to be one. Sincesatis�es constraint
(5g), this matrix is Hermitian. Since the aforementioned matrix
is both Hermitian and rank 1, one can apply the singular value
decomposition theorem to this matrix to infer that there exists
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a vector such that this matrix is equal to either
or . However, the last diagonal entry of matrix (10), being
equal to one, does not allow this matrix to be equal to the nega-
tive semide�nite matrix . Hence

This relation can be simpli�ed to obtain

As a result, satis�es the equation

(11)

De�ne now

(12)

and denote theth entries of and with and , respec-
tively, for every . Equality (5e) yields

Likewise, (5f), (11), and (12) lead to

or

(because is assumed to be nonzero if
). So far, it is shown that there are

two vectors and such that
1) the relation holds;
2) is equal to zero for every ;
3) is equal to zero for every ;
4) is equal to zero for every

.
It can be concluded from these properties and the set of equa-
tions in (3) that

where , , and are the parameters of Circuit 2 when switches
are turned on. Now, notice that the design speci-

�cations (1a)–(1e) are equivalent to (5a)–(5e) in Theorem 1, re-
spectively (see the proof of necessity for an explanation of this
equivalency). Hence, the design speci�cations are satis�ed for
this particular switching in Circuit 2.

Theorem 1 states that Problem 1 is tantamount to an opti-
mization problem whose constraints are all linear. However, the
rank of a Hermitian matrix is to be minimized, which makes
the problem nonconvex. Since a rank-minimization problem is
NP-hard in general, there may not be an ef�cient algorithm to
exactly solve it. The possibility of using a heuristic method to
solve this problem will be discussed later in Section III-D.

A question arises as to whether it is possible to convert
Problem 1 to another optimization problem that can be ef-

Fig. 6. Circuit 3 obtained from Circuit 1 by using a linear and passive control
unit.

�ciently solved using deterministic algorithms (rather than
randomized or heuristic algorithms). This question is tackled
in the Appendix, where it is shown that Problem 1 is NP-com-
plete, which makes it one of the hardest problems from the
computational point of view. An intuitive argument for the
NP-completeness of Problem 1 is as follows:the constraint that
each controllable port must be connected to an ideal switch
can be interpreted as the input power of each port must be
exactly zero. Since the power is a nonconvex function of the
voltage and current parameters, deciding whether there are
appropriate voltage and current values to make several power
terms precisely equal to zero becomes a hard problem.

We wish to study how Problem 1 can be slightly modi�ed so
that it becomes convex. This is the crux of the next section.

B. Passive Control Unit

The nonconvexity of Problem 1 originates from the fact that
the output ports are controlled by ideal
switches. In this part, let the control unit in Circuit 1 be a general
linear and strictly passive network, as opposed to a switching
network. This leads to Circuit 3, shown in Fig. 6. Henceforth,
assume that the network corresponding to the admittanceis
strictly passive (rather than being only passive). The objective
of this section is formalized in the following.

Problem 2: Find whether it is possible to design a control
unit in the form of a linear and strictly passive (reciprocal) net-
work such that the design speci�cations given in (1) are met for
Circuit 3.

Let denote the admittance of the linear and strictly passive
network that is being designed at a given frequency. Note that
the reciprocity condition in the aforementioned problem can be
translated as the real and imaginary parts ofare both sym-
metric. It is aimed to show that Problem 2 can be turned into a
convex optimization problem with a simple form. In what fol-
lows, a lemma is presented, which will be used later to prove
this important result.

Lemma 1:Given symmetric matrices , if
is nonsingular, then the following statements are equivalent.

1) is a positive de�nite matrix.
2) is a positive de�nite matrix.

Proof: First, assume that is a positive de�nite matrix.
Thus, is positive de�nite and so is . This im-
plies that is a positive de�nite matrix. So far, it
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is shown that 1) implies 2). To complete the proof, it remains
to show that the converse statement is also true. To this end, as-
sume that is a positive de�nite matrix. De�ne
the matrices

(13)

It is easy to verify that . Denote the number of
positive, negative, and zero eigenvalues of the symmetric matrix

with , , and , respectively. Analogously, denote the
same quantities of matrix with the triple . Since
matrix is nonsingular, applying the Sylvester’s Law of Inertia
to the relation yields

(14)

On the other hand, it can be concluded from the Hamiltonian
structure of matrix that

(15)

Furthermore, since every eigenvalue of is an
eigenvalue of and since all eigenvalues of
are positive, the quantity is at least equal to . In light of
the equalities (14) and (15), the relation is possible
only if . Thus, matrix has
negative eigenvalues. Nonetheless, the negative eigenvalues of
this matrix are the same as those of matrix ; hence,

has the maximum number of negative eigenvalues. This
simply proves that the eigenvalues of are all positive, which
completes the proof.

Decompose matrix in a block form as

where , , and .
For the given symmetric square matricesand of the same
dimension with , it can be veri�ed that

(16)
where “i” stands for the imaginary unit. This identity will be
exploited in the next theorem.

Theorem 2:Problem 2 is feasible if and only if there exist
symmetric matrices and vectors

and such that

(17)

and such that

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

Moreover, if there exist such matrices and satisfying the
aforementioned constraints, then one candidate for the admit-
tance matrix is

(19)

Proof of Necessity:Assume that there exists a linear and pas-
sive controller (control unit) with an admittanceat frequency

such that the design speci�cations listed in (1) are satis�ed
for Circuit 3 under this controller. The objective is to prove that
there exist symmetric matrices and vec-
tors and for which the constraints
given in (17) and (18) are satis�ed. For this purpose, consider
Circuit 3 under the passive network, and de�ne the vectors

Two equations can be written for Circuit 3 as follows:

(20)

These equations can be combined to obtain

The aforementioned relations can be manipulated to arrive at

(21a)

(21b)

(21c)

where

(22)

Note that the invertibility of the term
follows from the strict passivity of and . It is desired to
show that constraints (17) and (18) in Theorem 2 hold if, ,

, and are de�ned as

To this end, �rst observe that and are symmetric matrices
due to the reciprocity of and . Moreover, it can be con-
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cluded from the aforementioned de�nitions and (21c) that the
constraints (18a)–(18d) correspond to the design speci�cations
(1a)–(1d), respectively, which are assumed to hold for Circuit 3.
The constraints (18e) and (18f), on the other hand, are satis�ed
in light of the relations (21a) and (21b). The only challenging
part is to show that inequality (17) in Theorem 2 holds. For this
purpose, notice that the strict passivity of the network associ-
ated with implies the relation [1]. By applying
identity (16) to (22) and by using this fact, one can write

(23)

Since the term is the (1,1) block entry
of the inverse of the matrix

which is a principal submatrix of , it follows from the strict
passivity of the admittance matrix that

(24)

Inequalities (23) and (24) lead to

(25)
The following two properties can be deduced from this relation.

1) First, Lemma 1 yields

(26)

2) Second, inequality (25) can be rearranged to obtain

or equivalently

(27)
Schur’s complement formula can be used to conclude that in-
equalities (26) and (27) are equivalent to (17). This completes
the proof of necessity.

Proof of Sufficiency: Since the proof can be carried out in line
with the approach taken at the proof of necessity, only a sketch
of the proof will be provided here. Assume that the constraints
given in (17) and (18) are satis�ed for some symmetric matrices

and vectors and
. The goal is to show that the design speci�cations

listed in (1) are met for Circuit 3 if the admittance of the
passive controller (at frequency ) is considered as

For this choice of matrix , it follows from (18f) and (21b)
that is equal to . Then, it can be concluded from (18e)
and (21a) that . Now, one can easily verify that the
design speci�cations (1a)–(1d) correspond to the inequalities

(18a)–(18d), respectively, which are assumed to hold. On the
other hand, the design speci�cation (1e) is satis�ed in light of
the relation (18e) and the equality

[see (20)]. Hence, it only remains to show that matrixintro-
duced earlier corresponds to a strictly passive network. This can
be shown using Lemma 1 and Schur’s complement formula in
line with the argument pursued in the proof of necessity. The
details are omitted for brevity.

Regarding the optimization problem proposed in Theorem 2,
it is easy to observe that the constraints are all linear. Therefore,
Theorem 2 states that Problem 2 is equivalent to an LMI feasi-
bility problem, which can be handled ef�ciently using a proper
software tool such as YALMIP or SOSTOOLS [22], [23]. This
signi�es that replacing switches with a passive network facili-
tates the circuit design at the cost of complicating its implemen-
tation in practice. In the case when it is strictly required to de-
sign a collection of switches, Theorem 2 is still useful. Indeed,
since Circuit 2 is a special form of Circuit 3, the infeasibility
of Problem 2 implies the infeasibility of Problem 1. As a result,
one can regard the LMI problem proposed in Theorem 2 as a
sanity test for checking the feasibility of Problem 1.

Assume that Problem 2 is feasible, and therefore, an admit-
tance matrix (at frequency ) can be obtained by solving
the feasibility problem given in Theorem 2. The next step is to
design a reciprocal passive network whose corresponding ad-
mittance transfer function at frequency is equal to . To �nd
such a network, note that the real part ofis a positive de�nite
matrix and that its imaginary part is symmetric. As a result, ma-
trix can be expressed as

where and are both symmetric, and
is positive de�nite. De�ne an admittance transfer function
as

It is evident that . On the other hand, can
be implemented by the parallel connection of two -port
networks: 1) a resistive network with the conductance matrix
and 2) a reactive network with the susceptance matrix .
Note that some ideal transformers might also be needed to re-
alize due to the multiport nature of the network. One can
refer to [1] and [2] for the detailed discussions on the realization
of a given admittance matrix by passive elements.

C. Decoupled Passive Control Unit

The main issue with the admittance matrix obtained in
Theorem 2 is that its corresponding passive network could po-
tentially have several components (electrical elements), which
may complicate its implementation. To circumvent this draw-
back, one can impose a sparsity constraint onto make it di-
agonal. Note that Circuit 3, under a passive control unit with a
diagonal admittance transfer function, is equivalent toCircuit 4,
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compared to Circuit 4. However, the implementation of Circuit
4 is much simpler than that of Circuit 3 for large-scale systems.

Remark 2:To reduce the implementation complexity of Cir-
cuit 3, it is preferable to use a small subset of the control-
lable ports, if possible. More speci�cally, it might be possible to
satisfy the design speci�cations only by controlling a few of the
controllable ports. Hence, one can take the following strategy:
check whether a passive control unit can be designed for port

to satisfy the design objectives (1); if not, verify the ex-
istence of a controller for ports and ; and continue
this procedure up to the point where enough number of control-
lable ports are found whose passive control makes us meet the
design speci�cations. This heuristic method can signi�cantly re-
duce the implementation complexity.

F. Generalizations

Problems 1, 2, and 3 studied in this paper target a circuit
synthesis, with the design speci�cations given in (1). However,
the techniques developed here can be generalized to incorporate
other types of design speci�cations. For example, assume that
an output voltage , where , is required to be
suf�ciently weak, as demanded by antenna applications. This
constraint can be formalized as , where denotes
the two norms and is a given positive number. To account for
this new design speci�cation, the constraint

should be added to the optimization problem of Theorem 1.
Likewise, the constraint

should be included in the optimization problems of Theorems
2 and 3. As another example, if one needs to design a control
unit for Circuit 1 in the form of a decoupledlosslessnetwork,
it suf�ces to replace the constraint with in the
optimization problem of Theorem 3.

Unlike Theorems 1 and 3 that proposeminimizationprob-
lems, Theorem 2 offers afeasibility problem. In other words,
there is no speci�c quantity in the feasibility problem of The-
orem 2 that must be minimized (or maximized). This provides
a degree of freedom in the underlying circuit synthesis. To be
more precise, Theorem 2 can be employed to simultaneously
solve Problem 2 and to minimize (maximize) some quantity of
interest such as the consumed power at a speci�c port. This point
will be illustrated in the next section through some simulations.

As another generalization, assume that the goal is to design
a passive control unit with a prespeci�ed structure. An example
of this case is the �lter shown in Fig. 4 whose control unit is
structured in terms of the impedancesto . To handle this
problem, it suf�ces to employ Theorem 3 after the following
slight modi�cations.

1) Replace the diagonality requirement of the matrix variables
and with a desired pattern condition on these ma-

trices, e.g., certain entries of these matrices must be zero
according to the desired structure of the control unit being
designed.

2) Replace the condition with the general passivity
constraint (17).

Fig. 8. Antenna problem studied in Example 1.

IV. SIMULATION RESULTS

To illustrate the ef�cacy of the present work in the context of
antenna design, note that most of the practical antenna problems
deal with the optimization of the input impedance and/or the
antenna gain via changing the geometry of the antenna. This is
achieved in reality by means of inef�cient heuristic algorithms.
For instance, a PSO technique is deployed in [27] to optimize
the antenna input impedance by varying its length, width,
and feeding point. That algorithm was applied to a simple
impedance matching problem with only three variables, which
consumed more than 25 h to obtain the solution. This clearly
shows that such algorithms are dramatically time consuming
even for very small sized antenna problems. Two important
practical examples will be studied in the sequel to demonstrate
that more complicated antenna design problems with 12 and
90 variables can be solved on the order of seconds rather than
hours using the method developed here.

Example 1: Consider the antenna con�guration shown in
Fig. 8, which consists of a transmitting dipole antenna (blue
bar), a 3 3 array of metal plates (antenna parasitic elements),
and a receiving dipole antenna located at the far �eld (green
bar). There are 14 ports in this �gure, which are as follows.

1) Port 1 acts as a receiving antenna sampling the radiation
pattern of the transmitting antenna at a speci�c angle in
the far �eld.

2) Ports 2 to 13 are intended to change the boundary condition
of the transmitting antenna.

3) Port 14 corresponds to the transmitting antenna.
The objective is to �nd optimum impedance values for the para-
sitic elements such that the received power and the antenna input
impedance satisfy a speci�c set of constraints. For this purpose,
the circuit model of the antenna system is extracted at a desired
frequency of 3.5 GHz (using localized differential lumped ports)
by means of the EM software IE3D [24]. This model can be
any of the circuits shown in Figs. 5–7, depending on how the
impedances of the parasitic elements are designed. Note that
and are equal to 13 and 1, respectively, in this example, and

.
The three important goals in a typical antenna problem are the

following: 1) received power maximization; 2) received power
maximization under an input admittance constraint; and 3) input
impedance matching. Tackling these problems is central to this
example, which is carried out in the sequel.
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...
...

...
...

... (36)

the algorithm can be adapted to solve all NP problems in poly-
nomial time [26]. It is desired to prove that the circuit switching
problem posed in this paper (i.e., Problem 1) is an NP-complete
problem. This is accomplished in the sequel.

Theorem 4:Problem 1 is NP-complete.
Proof: Assume that can be written as for some

natural number , and assume that (the tech-
nique being developed in the following can be adopted for other
values of ). Recall that the present work considers output ports

as the ports of interest used in specifying the de-
sign objectives and ports as the controllable
ports connected to a control unit. To simplify the argument of
the proof, assume with no loss of generality that ports

are the controllable ports, and the rest
of the ports are the ports whose voltages are used in de�ning the
design speci�cations (a renumbering of the output ports con-
verts the problem to the conventional one considered here). Let
the matrix have a particular form given by (36), in which

are some arbitrary integers (see equation at the
top of the page). It is worth mentioning that this type ofcor-
responds to a lossless network. Impose the constraints

(37)

on the output voltages. The goal is to show that Problem 1 is
NP-complete even for the special networks of the form (36)
under the aforementioned constraints. Given a natural number

, the conditions in (37) lead to the equations

Since port is not a controllable port, it follows from
the design speci�cations in (1) that its current must be zero.
In other words, , or equivalently, .
On the other hand, the aforementioned equations yield that the
switching condition is tantamount to the rela-
tion . Thus, it can be concluded that

(38)

Moreover, since ports and are not controllable
ports, their current must be zero, which gives rise to

Note that the equality also leads to the aforemen-
tioned constraint. By using (38) and by letting be equal to
one, the aforementioned equation can be interpreted as follows:
given the integers , is it possible to �nd a subset
of these numbers with a zero sum? This problem is referred to as
thesubset sum problemand is known to be NP-complete [26].
This completes the proof.
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